scholarly journals Paracoccus homiensis sp. nov., isolated from a sea-sand sample

2006 ◽  
Vol 56 (10) ◽  
pp. 2387-2390 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
Yang-Hee Cho ◽  
...  

Strain DD-R11T, isolated from a sea-sand sample from Homi Cape, Pohang city, South Korea, was a Gram-negative, aerobic, motile, non-spore-forming, rod- to ovoid-shaped bacterium. Colonies grown on marine agar were circular, convex and colourless to creamy white. Growth occurred between 10 and 40 °C (optimum 25–30 °C) and at pH 5.0–9.0 (optimum pH 6.0–8.0). The strain could grow in up to 15 % NaCl (optimum 3–5 % NaCl). According to 16S rRNA gene sequence analysis, the strain was a member of the genus Paracoccus in the Alphaproteobacteria. Sequence similarities to type strains of the genus Paracoccus were between 94.6 and 98.3 %, showing the highest sequence similarity to Paracoccus zeaxanthinifaciens ATCC 21588T. The DNA–DNA relatedness value of strain DD-R11T and P. zeaxanthinifaciens ATCC 21588T was 27 %. Strain DD-R11T was characterized by having ubiquinone 10 as the major respiratory quinone and C18 : 1 ω7c as the predominant fatty acid. The DNA G+C content was 63.0 mol%. On the basis of its phenotypic and genotypic characteristics, it is suggested that DD-R11T represents a novel species of the genus Paracoccus, for which the name Paracoccus homiensis sp. nov. is proposed, with DD-R11T (=KACC 11518T=DSM 17862T) as the type strain.

2006 ◽  
Vol 56 (11) ◽  
pp. 2653-2656 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Seung-Hee Yoo ◽  
Jong-Shik Kim ◽  
Soon-Wo Kwon ◽  
...  

A marine, Gram-negative, aerobic, motile, straight-rod-shaped, moderately halophilic bacterium, designated strain DD-M3T, was isolated from sea sand in Pohang, Korea. A phylogenetic tree based on 16S rRNA gene sequences showed that the strain fell within the evolutionary radiation encompassed by the genus Marinobacter. The levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of recognized Marinobacter species ranged from 94.2 to 97.6 %, the highest values being with Marinobacter flavimaris SW-145T (97.6 %) and Marinobacter lipolyticus SM19T (96.8 %). The values for DNA–DNA relatedness between isolate DD-M3T and the type strains of the most closely related species, M. flavimaris and M. lipolyticus, were 41 and 36 %, respectively. Strain DD-M3T was characterized as having Q-9 as the predominant respiratory quinone and 16 : 0, summed feature 3 and 18 : 1ω9c as the main fatty acids. The DNA G+C content was 54.1 mol%. On the basis of its phenotypic and genotypic characteristics, DD-M3T represents a novel species of the genus Marinobacter, for which the name Marinobacter koreensis sp. nov. is proposed, with DD-M3T (=KACC 11513T=DSM 17924T) as the type strain.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3131-3136 ◽  
Author(s):  
Hina Singh ◽  
Juan Du ◽  
Kyung-Hwa Won ◽  
Jung-Eun Yang ◽  
Shahina Akter ◽  
...  

A novel bacterial strain, designated THG-PC7T, was isolated from fallow farmland soil in Yongin, South Korea. Cells of strain THG-PC7T were Gram-stain-negative, dark yellow, aerobic, rod-shaped and had gliding motility. Strain THG-PC7T grew optimally at 25–35 °C, at pH 7 and in the absence of NaCl. Comparative 16S rRNA gene sequence analysis identified strain THG-PC7T as belonging to the genus Lysobacter, exhibiting highest sequence similarity with Lysobacter ximonensis KCTC 22336T (98.7 %) followed by Lysobacter niastensis KACC 11588T (95.7 %). In DNA–DNA hybridization tests, DNA relatedness between strain THG-PC7T and its closest phylogenetic neighbour L. ximonensis was below 25 %. The DNA G+C content of the novel isolate was determined to be 62.5 mol%. Flexirubin-type pigments were found to be present. The major cellular fatty acids were determined to be iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 1ω9c. The major respiratory quinone was identified as ubiquonone-8 (Q8). The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospolipid. On the basis of results from DNA–DNA hybridization and the polyphasic data, strain THG-PC7T represents a novel species of the genus Lysobacter, for which the name Lysobacter novalis sp. nov. is proposed. The type strain is THG-PC7T( = KACC 18276T = CCTCC AB 2014319T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 545-549 ◽  
Author(s):  
Zhe Qu ◽  
Zhao Li ◽  
Xiuming Zhang ◽  
Xiao-Hua Zhang

A novel Gram-stain-positive, white-pigmented, non-motile, non-sporulating, catalase- and oxidase-positive, strictly aerobic coccus, designated strain ZXM223T, was isolated from a seawater sample collected from the coast of Qingdao, PR China, during a green algal bloom. It grew at pH 6.0–10.5 and 0–25.0 % (w/v) NaCl, with optimum growth at pH 8.5 and 3.0 % (w/v) NaCl. Growth occurred at 16–42 °C (optimum at 28 °C). The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Menaquinone 6 (MK-6) was the major respiratory quinone. The polar lipids were phosphatidylglycerol, three unidentified phospholipids and two unknown glycolipids. The peptidoglycan type was l-Lys–Gly5–6. The genomic DNA G+C content was 43.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain ZXM223T within the genus Salinicoccus, with sequence similarity of 92.2–97.1 % between ZXM223T and the type strains of this genus. The closest relatives were Salinicoccus kunmingensis YIM Y15T, ‘S. salitudinis’ YIM-C678 and S. alkaliphilus T8T. The DNA–DNA relatedness between strain ZXM223T and S. kunmingensis CGMCC 1.6302T and ‘S. salitudinis’ CGMCC 1.6299 ( = YIM-C678) was 37±3 and 30±2 %, respectively. The phenotypic, chemotaxonomic and phylogenetic characteristics and low DNA–DNA relatedness support the proposal of a novel species of the genus Salinicoccus, Salinicoccus qingdaonensis sp. nov., with the type strain ZXM223T ( = LMG 24855T  = CGMCC 1.8895T).


2010 ◽  
Vol 60 (2) ◽  
pp. 344-348 ◽  
Author(s):  
Mika Miyashita ◽  
Shuki Fujimura ◽  
Yasuyoshi Nakagawa ◽  
Makoto Nishizawa ◽  
Noboru Tomizuka ◽  
...  

A rod-shaped Gram-staining-negative, non-motile, aerobic and fucoidan-digesting strain, designated TC2T, was isolated from marine algae collected from the coast of the Sea of Okhotsk at Abashiri, Hokkaido, Japan. The bacterium formed yellow, translucent, circular and convex colonies. Comparative 16S rRNA gene sequence analysis indicated that the strain belonged to the genus Flavobacterium, with the highest sequence similarities of 97.1 to 97.3 % to the type strains of Flavobacterium frigidarium, Flavobacterium frigoris, Flavobacterium limicola and Flavobacterium psychrolimnae. DNA–DNA relatedness values between strain TC2T and the above-mentioned species were lower than 28 %. The genomic DNA G+C content was 33.9 mol%. The major respiratory quinone was menaquinone-6 and the predominant fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C15 : 0 3-OH and summed feature 3 (which comprises iso-C15 : 0 2-OH and/or C16 : 1 ω7c). Strain TC2T could be differentiated from related species by several phenotypic characteristics. Thus, on the basis of these results, strain TC2T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium algicola sp. nov. is proposed. The type strain is TC2T (=NBRC 102673T =CIP 109574T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1506-1510 ◽  
Author(s):  
Yochan Joung ◽  
Kiseong Joh

A non-motile, pale-yellow bacterium, designated strain HMD1056T, was isolated from an artificial lake located within the campus of Hankuk University of Foreign Studies, Yongin, Korea. The major fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c; 49.1 %) and iso-C15 : 0 (22.4 %). The major respiratory quinone was MK-7. The DNA G+C content was 46.9 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD1056T formed a lineage within the genus Mucilaginibacter and was closely related to the type strains of Mucilaginibacter ximonensis (95.4 % sequence similarity), Mucilaginibacter kameinonensis (94.5 %) and Mucilaginibacter paludis (93.4 %). On the basis of the evidence presented in this study, strain HMD1056T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter myungsuensis sp. nov. is proposed. The type strain is HMD1056T ( = KCTC 22746T  = CECT 7550T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2056-2063 ◽  
Author(s):  
Bhumika Vaidya ◽  
Ravinder Kumar ◽  
Suresh Korpole ◽  
Naga Radha Srinivas Tanuku ◽  
Anil Kumar Pinnaka

A novel Gram-stain-negative, rod-shaped, motile bacterium, designated strain AK21T, was isolated from coastal surface sea water at Visakhapatnam, India. The strain was positive for oxidase, catalase, lipase, l-proline arylamidase and tyrosine arylamidase activities. The predominant fatty acids were C12:0, C12:0 3-OH, C16:0, C16:1ω9c, C18:1ω9c and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, two unidentified phospholipids and one unidentified lipid. Q-10 was the predominant respiratory quinone. The DNA G+C content of the strain was 54.6 mol%. 16S rRNA gene sequence analysis indicated that strain AK21T was a member of the genus Marinobacter and was closely related to Marinobacter xestospongiae, with pairwise sequence similarity of 97.2 % to the type strain, with similarity to other members of the genus of 94.0–96.8 %. The mean DNA–DNA relatedness of strain AK21T with M. xestospongiae JCM 17469T was 34.5 %, and relatedness with Marinobacter mobilis JCM 15154T was 40.5 %. Phylogenetic analysis showed that strain AK21T clustered with the type strains of M. xestospongiae and M. mobilis at distances of 2.9 and 2.8 % (97.1 and 97.2 % similarity), respectively. Based on the phenotypic characteristics and on phylogenetic inference, it appears that strain AK21T represents a novel species of the genus Marinobacter, for which the name Marinobacter nitratireducens sp. nov. is proposed. The type strain of Marinobacter nitratireducens is AK21T ( = MTCC 11704T = JCM 18428T).


2011 ◽  
Vol 61 (2) ◽  
pp. 347-350 ◽  
Author(s):  
Ying-Yi Huo ◽  
Xue-Wei Xu ◽  
Xue Li ◽  
Chen Liu ◽  
Heng-Lin Cui ◽  
...  

A Gram-negative, neutrophilic and rod-shaped bacterium, strain ZH17T, was isolated from a marine sediment of the East China Sea and subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0–7.5 % (w/v) NaCl and at pH 6.5–9.0; optimum growth was observed with 0.5–3.0 % (w/v) NaCl and at pH 7.5. Chemotaxonomic analysis showed ubiquinone-10 as predominant respiratory quinone and C18 : 1 ω7c, 11-methyl C18 : 1 ω7c, C16 : 0, C12 : 0 3-OH and C16 : 0 2-OH as major fatty acids. The genomic DNA G+C content was 63.5 mol%. Comparative 16S rRNA gene sequence analysis revealed that the isolate belongs to the genus Ruegeria. Strain ZH17T exhibited the closest phylogenetic affinity to the type strain of Ruegeria pomeroyi, with 97.2 % sequence similarity, and less than 97 % sequence similarity with respect to other described species of the genus Ruegeria. The DNA–DNA reassociation value between strain ZH17T and R. pomeroyi DSM 15171T was 50.7 %. On the basis of phenotypic and genotypic data, strain ZH17T represents a novel species of the genus Ruegeria, for which the name Ruegeria marina sp. nov. (type strain ZH17T =CGMCC 1.9108T =JCM 16262T) is proposed.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2925-2930 ◽  
Author(s):  
Hai Li ◽  
Xi-Ying Zhang ◽  
Chang Liu ◽  
Ang Liu ◽  
Qi-Long Qin ◽  
...  

A Gram-stain-negative, yellow-pigmented, aerobic, non-flagellated, non-gliding bacterial strain, designated SM1203T, was isolated from surface seawater of Kongsfjorden, Svalbard. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1203T was affiliated with the genus Bizionia in the family Flavobacteriaceae. The strain shared the highest 16S rRNA gene sequence similarity (>96  %) with the type strains of Formosa spongicola (96.8  %), Bizionia paragorgiae (96.3  %), B. saleffrena (96.3  %) and B. echini (96.1  %) and 95.4–95.7  % sequence similarity with the type strains of other known species of the genus Bizionia. The strain grew at 4–30 °C and in the presence of 1.0–5.0  % (w/v) NaCl. The major fatty acids of strain SM1203T were iso-C15  :  0, iso-C15  :  1, anteiso-C15  :  0 and C15  :  0 and the main polar lipids were phosphatidylethanolamine and an unidentified lipid. The major respiratory quinone of strain SM1203T was menaquinone 6 (MK-6). The genomic DNA G+C content of strain SM1203T was 34.8 mol%. Based on the polyphasic characterization of strain SM1203T in this study, the strain represents a novel species in the genus Bizionia, for which the name Bizionia arctica sp. nov. is proposed. The type strain is SM1203T ( = CGMCC 1.12751T = JCM 30333T). An emended description of the genus Bizionia is also given.


2011 ◽  
Vol 61 (9) ◽  
pp. 2221-2226 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Sing-Rong Jiang ◽  
Chaolun Allen Chen ◽  
Jih-Terng Wang ◽  
Wen-Ming Chen

A bacterial strain, designated KTW-16T, was isolated from the reef-building coral Stylophora pistillata, collected from southern Taiwan. Strain KTW-16T was a Gram-negative, facultatively anaerobic, pale-yellow, non-motile short rod. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KTW-16T belonged to the genus Paracoccus in the Alphaproteobacteria and exhibited 93.7–96.9 % 16S rRNA gene sequence similarity with type strains of species of the genus Paracoccus (96.9 % with Paracoccus alcaliphilus JCM 7364T). Strain KTW-16T grew at 15–40 °C (optimum 35 °C), at pH 6.0–10.0 (optimum pH 8.0) and with 0–9 % NaCl (optimum 5 %). The predominant cellular fatty acids were C18 : 1ω7c, C19 : 0 cyclo ω8c and C18 : 0. The major respiratory quinone was Q-10 and the DNA G+C content was 69.1 mol%. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and several unknown polar lipids. The physiological and biochemical tests allowed clear phenotypic differentiation of the isolate from the type strains of already described Paracoccus species. It is evident from the genotypic, phenotypic and chemotaxonomic analysis that strain KTW-16T should be classified in a novel species of the genus Paracoccus, for which the name Paracoccus stylophorae sp. nov. is proposed. The type strain is KTW-16T ( = LMG 25392T  = BCRC 80106T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5312-5318 ◽  
Author(s):  
Ram Hari Dahal ◽  
Dhiraj Kumar Chaudhary ◽  
Dong-Uk Kim ◽  
Jaisoo Kim

A motile, Gram-stain-negative, rod-shaped bacterium, designated G-4-1-14T, was obtained from forest soil sampled at Gwanggyo mountain, Gyeonggi-do, Republic of Korea. Cells were colourless, aerobic, grew optimally at 28–35 °C and hydrolysed DNA and casein. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain G-4-1-14T formed a lineage within the genus Zoogloea . The closest members were Zoogloea resiniphila ATCC 70068T (98.6 % sequence similarity), Zoogloea caeni EMB43T (98.2 %), Zoogloea oryzae A-7T (97.7 %), Zoogloea ramigera IAM 12136T (96.9 %) and Zoogloea oleivorans BucT (96.2 %). The major respiratory quinone was ubiquinone-8 and the principal polar lipids were phosphatidylethanolamine, phosphatidyl-N-methylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The predominant cellular fatty acids were summed feature 3 (iso-C15 :0 2-OH/C16  : 1 ω7c) and C16 : 0. The DNA G+C content was 65.9 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain G-4-1-14T and other type strains were ≤81.6 and ≤24.9 %, respectively, which are below the species demarcation thresholds. Based on the results of phenotypic, phylogenetic and genomic analyses, strain G-4-1-14T represents a novel species in the genus Zoogloea , for which the name Zoogloea dura sp. nov. is proposed. The type strain is G-4-1-14T (=KACC 21618T=NBRC 114358T). In addition, we propose emendation of the genus Zoogloea and the species Zoogloea oryzae and Zoogloea ramigera .


Sign in / Sign up

Export Citation Format

Share Document