scholarly journals Reclassification of Geobacillus galactosidasius and Geobacillus yumthangensis as Parageobacillus galactosidasius comb. nov. and Parageobacillus yumthangensis comb. nov., respectively

2020 ◽  
Vol 70 (12) ◽  
pp. 6518-6523 ◽  
Author(s):  
Ishfaq Nabi Najar ◽  
Sayak Das ◽  
Nagendra Thakur

Members of the genus Geobacillus within the phylum Firmicutes are Gram-stain-positive, aerobic, endospore-forming, obligate thermophiles. In 2016, the genus Geobacillus was subdivided into two genera based on whole-genome approaches. The new genus, Parageobacillus , comprises five genomospecies. In this study, we recommend the reclassification of two Geobacillus species, Geobacillus galactosidasius and Geobacillus yumthangensis , into the genus Parageobacillus . We have applied whole genome approaches to estimate the phylogenetic relatedness among the 18 Geobacillus and Parageobacillus type strains for which genome sequences are currently publicly available. The phylogenomic metrics AAI (average amino acid identity), ANI (average nucleotide identity) and dDDH (digital DNA–DNA hybridization) denoted that the type strains of G. galactosidasius and G. yumthangensis belong to the genus Parageobacillus . Furthermore, a phylogeny based on comparison of the 16S rRNA gene sequences, recN gene sequences and core genes identified from the whole-genome analyses designated that the type strains of G. galactosidasius and G. yumthangensis belong in the genus Parageobacillus . With these findings, we consequently propose that G. galactosidasius and G. yumthangensis should be reclassified as Parageobacillus galactosidasius comb. nov. and Parageobacillus yumthangensis comb. nov.

Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


2020 ◽  
Vol 70 (4) ◽  
pp. 2873-2878 ◽  
Author(s):  
María José León ◽  
Cristina Galisteo ◽  
Antonio Ventosa ◽  
Cristina Sánchez-Porro

A comparative taxonomic study of Spiribacter and Halopeptonella species was carried out using a phylogenomic approach based on comparison of the core genome, orthologous average nucleotide identity (OrthoANIu), Genome-to-Genome Distance Calculator (GGDC) and average amino acid identity (AAI). Phylogenomic analysis based on 976 core translated gene sequences obtained from their genomes showed that Spiribacter aquaticus SP30T, S. curvatus UAH-SP71T, S. roseus SSL50T, S. salinus M19-40T and Halopeptonella vilamensis DSM 21056T formed a robust cluster, clearly separated from the remaining species of closely related taxa. AAI between H. vilamensis DSM 21056T and the species of the genus Spiribacter was ≥73.1 %, confirming that all these species belong to the same single genus. On the other hand, S. roseus SSL50T and S. aquaticus SP30T showed percentages of OrthoANIu and digital DNA–DNA hybridization of 98.4 % and 85.3 %, respectively, while these values among those strains and the type strains of the other species of Spiribacter and H. vilamensis DSM 21056T were ≤80.8 and 67.8 %, respectively. Overall, these data show that S. roseus SSL50T and S. aquaticus SP30T constitute a single species and thus that S. aquaticus SP30T should be considered as a later, heterotypic synonym of S. roseus SSL50T based on the rules for priority of names. We propose an emended description of S. roseus , including the features of S. aquaticus . We also propose the reclassification of H. vilamensis as Spiribacter vilamensis comb. nov.


Author(s):  
Kyung June Yim ◽  
Dong-Hyun Jung ◽  
Seok Won Jang ◽  
Sanghwa Park

A cream-coloured, Gram-stain-negative, rod-shaped bacterium, designated strain KSC-6T, was isolated from soil sampled at the Gapcheon River watershed in Daejeon, Republic of Korea. The organism does not require NaCl for growth and grows at pH 6.0–8.0 (optimum, pH 7.0) and 10–37 °C (optimum, 25 °C). Phylogenetic trees based on the 16S rRNA gene sequences reveal that strain KSC-6T belongs to the family Chitinophagaceae within the order Chitinophagales and is most closely related to Panacibacter ginsenosidivorans Gsoil 1550T (95.9% similarity). The genomic DNA G+C content was 38.9 mol%. The major cellular fatty acids (>8 %) of strain KCS-6T were iso-C15:0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The predominant respiratory quinone was menaquinone 7 and the predominant polar lipids were phosphatidylethanolamine, five unidentified aminolipids and two unidentified lipids. Based on genome analyses, low digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity values with closely related genera, and differential chemotaxonomic and physiological properties, we suggest that strain KCS-6T represents a novel species in a new genus in the family Chitinophagaceae , for which the name Limnovirga soli gen. nov., sp. nov. (type strain KCS-6T=KCCM 43337T=NBRC 114336T) is proposed.


Author(s):  
Torben Sølbeck Rasmussen ◽  
Theresa Streidl ◽  
Thomas C. A. Hitch ◽  
Esther Wortmann ◽  
Paulina Deptula ◽  
...  

A bacterial strain, designated WCA-9-b2T, was isolated from the caecal content of an 18-week-old obese C57BL/6NTac male mouse. According to phenotypic analyses, the isolate was rod-shaped, strictly anaerobic, spore-forming, non-motile and Gram-stain-positive, under the conditions tested. Colonies were irregular and non-pigmented. Analysis of the 16S rRNA gene sequence indicated that the isolate belonged to the order Clostridiales with Dorea longicatena ATCC 27755T (94.9 % sequence identity), Ruminococcus gnavus ATCC 29149T (94.8%) and Clostridium scindens ATCC 35704T (94.3%) being the closest relatives. Whole genome sequencing showed an average nucleotide identity <74.23 %, average amino acid identity <64.52–74.67 % and percentage of conserved proteins values <50 % against the nine closest relatives ( D. longicatena , Ruminococcus gnavus , C. scindens , Dorea formicigenerans , Ruminococcus lactaris , Clostridium hylemonae , Merdimonas faecis , Faecalicatena contorta and Faecalicatena fissicatena ). The genome-based G+C content of genomic DNA was 44.4 mol%. The major cellular fatty acids were C16 : 0 (24.5%), C18 : 1 cis9 (19.8 %), C16 : 0 DMA (11.7%), C18 : 0 (8.4%) and C14 : 0 (6.6%). Respiratory quinones were not detected. The predominant metabolic end products of glucose fermentation were acetate and succinate. Production of CO2 and H2 were detected. Based on these data, we propose that strain WCA-9-b2T represents a novel species within a novel genus, for which the name Sporofaciens musculi gen. nov., sp. nov. is proposed. The type strain is WCA-9-b2T (=DSM 106039T=CECT 30156T).


Author(s):  
Minchung Kang ◽  
Geeta Chhetri ◽  
Jiyoun Kim ◽  
Inhyup Kim ◽  
Taegun Seo

A Gram-stain-negative, aerobic and non-motile bacterium, strain sand1-3T, was isolated from beach sand collected from Haeundae Beach located in Busan, Republic of Korea. Based on the results of 16S rRNA gene sequence and phylogenetic analyses, Sphingomonas daechungensis CH15-11T (97.0 %), Sphingomonas edaphi DAC4T (96.8 %), Sphingomonas xanthus AE3T (96.5 %) and Sphingomonas oryziterrae YC6722T (96.0 %) were selected for comparing phenotypic and chemotaxonomic characteristics. Cells of strain sand1-3T grew at 7–50 °C (optimum, 30–35 °C), pH 5.0–8.0 (optimum, pH 7.0–8.0) and in the presence of 0–0.5 % (w/v) NaCl (optimum, 0 %). Major polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, one unidentified glycolipid and one unidentified phosphoglycolipid. The major fatty acids were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) and C18 : 1 2-OH. Moreover, the sole respiratory quinone and major polyamine were identified as ubiquinone-10 and homospermidine, respectively. The genomic DNA G+C content was 65.9 mol%. The digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity values of strain sand1-3T and its reference strains with publicly available genomes were 17.9–18.9 %, 72.0–75.3 % and 63.3–76.5 % respectively. Based on polyphasic evidence, we propose Sphingomonas sabuli sp. nov. as a novel species within the genus Sphingomonas . The type strain is sand1-3T (=KCTC 82358T=NBRC 114538T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2017-2022 ◽  
Author(s):  
Tao Gu ◽  
Li Na Sun ◽  
Jun Zhang ◽  
Xin Hua Sui ◽  
Shun Peng Li

A Gram-stain-negative, non-motile, pale yellow, rod-shaped bacterial strain, YW14T, was isolated from soil and its taxonomic position was investigated by a polyphasic study. Strain YW14T did not form nodules on three different legumes, and the nodD and nifH genes were not detected by PCR. Strain YW14T contained Q-10 as the predominant ubiquinone. The major cellular fatty acid was C18 : 1ω7c. Phylogenetic analyses based on 16S rRNA gene sequences and seven housekeeping gene sequences (recA, atpD, glnII, gyrB, rpoB, dnaK and thrC) showed that strain YW14T belonged to the genus Rhizobium . Strain YW14T showed 16S rRNA gene sequence similarity of 93.4–97.3 % to the type strains of recognized species of the genus Rhizobium . DNA–DNA relatedness between strain YW14T and the type strains of Rhizobium sullae IS123T and Rhizobium yanglingense CCBAU 71623T was 19.6–25.7 %, indicating that strain YW14T was distinct from them genetically. Strain YW14T could also be differentiated from these phylogenetically related species of the genus Rhizobium by various phenotypic properties. On the basis of phenotypic properties, phylogenetic distinctiveness and genetic data, strain YW14T is considered to represent a novel species of the genus Rhizobium , for which the name Rhizobium flavum sp. nov. is proposed. The type strain is YW14T ( = KACC 17222T = CCTCC AB2013042T).


Author(s):  
Ye-Ji Hwang ◽  
Jin-Soo Son ◽  
Soo-Yeong Lee ◽  
Min-Ji Kim ◽  
Jong Myong Park ◽  
...  

KUDC8001T was isolated from the rhizosperic soil of Elymus tsukushiensis in the Dokdo Islands, Republic of Korea. Strain KUDC8001T was Gram-stain-negative, non-motile and rod-shaped. KUDC8001T was catalase- and oxidase-positive. This strain is capable of growing at 4–37 °C and pH 7.0–8.0 and exhibited optimal growth at 25 °C and pH 7.0. It could be grown in R2A, nutrient agar and ISP2 agar plates. The cell width ranged from 0.7 to 1.0 µm, and length ranged from 2.5 to 5.5 µm. The genomic G+C content was 40.8 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that the strain KUDC8001T belongs to the genus Adhaeribacter , which is most closely related to the strain A. pallidiroseus HMF7616T (97.5%). The DNA relatedness of KUDC8001T with the type strains of A. pallidiroseus HMF7616T, A. swui 17 mud1-7T and A. arboris HMF7605T was ≤80.3 % based on average nucleotide identity calculations and ≤86.9 % based on average amino acid identity calculations. In silico DNA–DNA hybridization values of the strain KUDC8001T with the most closely related strains were 22.1, 24.0 and 24.4 %. Based on its phenotypic, phylogenetic, genetic and chemotaxonomic features, the strain KUDC8001T should be considered as a novel species in the genus Adhaeribacter , for which we have proposed the name Adhaeribacter radiodurans sp. nov. The type strain is KUDC8001T (=KCTC 82078T=CGMCC 1.18475T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6133-6141 ◽  
Author(s):  
Chan-Yeong Park ◽  
Seong-Jun Chun ◽  
Chunzhi Jin ◽  
Ve Van Le ◽  
Yingshun Cui ◽  
...  

A novel Gram-stain-negative, aerobic, non-spore-forming, non-motile, and rod-shaped bacterium, strain ETT8T was isolated from a chemostat culture of microalga Ettlia sp. YC001. Optimal growth was with 0–2% NaCl and at 25–37 °C on R2A medium. Phylogenetic analysis based on the 16S rRNA gene and genome sequence showed that strain ETT8T belongs to the genus Tabrizicola , with the close neighbours being T. sediminis DRYC-M-16T (98.1 %), T. alkalilacus DJCT (97.6 %), T. fusiformis SY72T (96.9 %), T. piscis K13M18T (96.8 %), and T. aquatica RCRI19T (96.5 %). The genomic comparison of strain ETT8T with type species in the genus Tabrizicola was analysed using the genome-to-genome distance calculator (GGDC), average nucleotide identity (ANI), and average amino acid identity (AAI) (values indicated ≤17.7, ≤75.4 and ≤71.9 %, respectively). The genomic DNA G+C content of strain ETT8T was 64.4 %, plus C18 : 1  ω6c and C18 : 0-iso were the major fatty acids and Q-10 the major respiratory quinone. Strain ETT8T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine aminolipid, and four unidentified lipids as the major polar lipids. Based on the chemotaxonomic, genotypic, and phenotype results, strain ETT8T was recognized as a novel species of the genus Tabrizicola for which the name Tabrizicola algicola sp. nov. is proposed. The type strain is ETT8T (=KCTC 72206T=JCM 31893T=MCC 4339T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1953-1960 ◽  
Author(s):  
Yen-Chi Wu ◽  
Shih-Ting Lin ◽  
Jia-Rong Guu ◽  
Tomohiko Tamura ◽  
Koji Mori ◽  
...  

A Gram-stain-positive, coccus- or oval-shaped, non-motile, haemolytic, asporogenous, catalase- and oxidase-negative, and facultatively anaerobic strain, 2B-2T, was isolated from a brewer’s grain used to make silage in Taiwan. Comparative analyses of 16S rRNA, hsp60 and pheS gene sequences demonstrated that strain 2B-2T was a member of the genus Vagococcus . On the basis of 16S rRNA gene sequence similarity, the type strains of Vagococcus teuberi (98.4 % similarity), Vagococcus carniphilus (98.4 %), Vagococcus martis (98.2 %), Vagococcus penaei (98.2 %) and Vagococcus fluvialis (98.0 %) were the closest neighbours to this novel strain. The similarity levels of concatenated housekeeping gene sequences (hsp60 and pheS) between strain 2B-2T and these closely related species ranged from 84.5 to 88.0 %. The average nucleotide identity and in silico DNA–DNA hybridization values between strain 2B-2T and its closest relatives were lower than 72.9 and 21.6 %, respectively. The DNA G+C content was 34.7 mol%. Phenotypic and genotypic features demonstrated that strain 2B-2T represents a novel species of the genus Vagococcus , for which the name Vagococcus silagei sp. nov. is proposed. The type strain is 2B-2T (=BCRC 81132T=NBRC 113536T).


2020 ◽  
Vol 70 (7) ◽  
pp. 4245-4249 ◽  
Author(s):  
kun-lian Mo ◽  
Ling Wang ◽  
Qing-juan Wu ◽  
Lin Ye ◽  
Xing-di Liu ◽  
...  

A Gram-stain-negative, short-rod-shaped and pink-pigmented bacterial strain (HB172049T) was isolated from mangrove sediment. Cells grew at 10–45 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.0) and with 0.5–9.0 % (w/v) NaCl (optimum, 2–5 %). Analysis of the 16S rRNA gene sequence revealed that the isolate had highest sequence similarities to Pontibacter mucosus DSM 100162T (96.5 %) and Pontibacter korlensis X14-1T (96.5 %). The values of average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization between the isolate and its close neighbours were, respectively, less than 80.1, 81.7 and 23.2 %. Chemotaxonomic analysis indicated that the sole respiratory quinone was MK-7 and the predominant cellular fatty acids were summed feature 4 and iso-C15 : 0 (42.2 and 24.6 %, respectively). The major polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified glycolipid, one unidentified phospholipid, one unidentified aminophospholipid and two unidentified polar lipids. The genomic DNA G+C content was 52.6 mol%. Based on polyphasic taxonomic characterization, it is proposed that strain HB172049T belongs to the genus Pontibacter and represents a novel species, for which the name Pontibacter mangrovi sp. nov. is proposed. The type strain is HB172049T (=CGMCC 1.16729T=JCM 33333T).


Sign in / Sign up

Export Citation Format

Share Document