scholarly journals Closed genome sequences of Staphylococcus lloydii sp. nov. and Staphylococcus durrellii sp. nov. isolated from captive fruit bats (Pteropus livingstonii)

Author(s):  
Kay Fountain ◽  
Marjorie J. Gibbon ◽  
Anette Loeffler ◽  
Edward J. Feil

The increasing availability of whole genome sequencing of bacteria has accelerated the discovery of novel species which may not have been easy to discriminate using standard phenotypic or single gene methods. Phylogenomic analysis of genome sequences from a collection of coagulase-negative staphylococcal species isolated from captive fruit bats revealed two clusters which were close to Staphylococcus kloosii . To assess the relatedness of the strains we used digital DNA–DNA hybridization (dDDH) and two methods for average nucleotide identity (ANI) computation which predicted two novel species having dDDH less than 70 % and ANI less than 95%. We propose these species as Staphylococcus lloydii sp. nov. (type strain 23_2_7_LYT=NCTC 14453T=DSM 111639T) and Staphylococcus durrellii sp. nov (type strain 27_4_6_LYT=NCTC 14454T=DSM 111640T).

Author(s):  
Nay C. Dia ◽  
Johan Van Vaerenbergh ◽  
Cinzia Van Malderghem ◽  
Jochen Blom ◽  
Theo H. M. Smits ◽  
...  

This paper describes a novel species isolated in 2011 and 2012 from nursery-grown Hydrangea arborescens cultivars in Flanders, Belgium. After 4 days at 28 °C, the strains yielded yellow, round, convex and mucoid colonies. Pathogenicity of the strains was confirmed on its isolation host, as well as on Hydrangea quercifolia. Analysis using MALDI-TOF MS identified the Hydrangea strains as belonging to the genus Xanthomonas but excluded them from the species Xanthomonas hortorum . A phylogenetic tree based on gyrB confirmed the close relation to X. hortorum . Three fatty acids were dominant in the Hydrangea isolates: anteiso-C15 : 0, iso-C15 : 0 and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c). Unlike X. hortorum pathovars, the Hydrangea strains were unable to grow in the presence of lithium chloride and could only weakly utilize d-fructose-6-PO4 and glucuronamide. Phylogenetic characterization based on multilocus sequence analysis and phylogenomic characterization revealed that the strains are close to, yet distinct from, X. hortorum . The genome sequences of the strains had average nucleotide identity values ranging from 94.35–95.19 % and in silico DNA–DNA hybridization values ranging from 55.70 to 59.40 % to genomes of the X. hortorum pathovars. A genomics-based loop-mediated isothermal amplification assay was developed which was specific to the Hydrangea strains for its early detection. A novel species, Xanthomonas hydrangeae sp. nov., is proposed with strain LMG 31884T (=CCOS 1956T) as the type strain.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4061-4067 ◽  
Author(s):  
Pascale Bourhy ◽  
Louis Collet ◽  
Sylvain Brisse ◽  
Mathieu Picardeau

A group of strains representing species of the genus Leptospira, isolated from patients with leptospirosis in Mayotte (Indian Ocean), were previously found to be considerably divergent from other known species of the genus Leptospira . This was inferred from sequence analysis of rrs (16S rRNA) and other genetic loci and suggests that they belong to a novel species. Two strains from each serogroup currently identified within this novel species were studied. Spirochaete, aerobic, motile, helix-shaped strains grew well at 30–37 °C, but not at 13 °C or in the presence of 8-azaguanine. Draft genomes of the strains were also analysed to study the DNA relatedness with other species of the genus Leptospira . The new isolates formed a distinct clade, which was most closely related to Leptospira borgpetersenii , in multilocus sequence analysis using concatenated sequences of the genes rpoB, recA, fusA, gyrB, leuS and sucA. Analysis of average nucleotide identity and genome-to-genome distances, which have recently been proposed as reliable substitutes for classical DNA–DNA hybridization, further confirmed that these isolates should be classified as representatives of a novel species. The G+C content of the genomic DNA was 39.5 mol%. These isolates are considered to represent a novel species, for which the name Leptospira mayottensis sp. nov. is proposed, with 200901116T ( = CIP 110703T = DSM 28999T) as the type strain.


Author(s):  
Ji Young Jung ◽  
Hye Kyeong Kang ◽  
Hyun Mi Jin ◽  
Sang-Soo Han ◽  
Young Chul Kwon ◽  
...  

A Gram-positive, facultative anaerobic, catalase-negative, non-motile, non-spore-forming and rod-shaped lactic acid bacterium strain, denoted as NFFJ11T and isolated from total mixed fermentation feed in the Republic of Korea, was characterized through polyphasic approaches, including sequence analyses of the 16S rRNA gene and housekeeping genes (rpoA and pheS), determination of average nucleotide identity and in silico DNA–DNA hybridization, fatty acid methyl ester analysis, and phenotypic characterization. Phylogenetic analyses based on 16S rRNA, rpoA and pheS gene sequences revealed that strain NFFJ11T belonged to the genus Companilactobacillus . The 16S rRNA gene sequence of strain NFFJ11T exhibited high similarity to Companilactobacillus formosensis S215T (99.66 %), Companilactobacillus farciminis Rv4 naT (99.53 %), Companilactobacillus crustorum LMG 23699T (99.19 %), Companilactobacillus futsaii YM 0097T (99.06 %), Companilactobacillus zhachilii HBUAS52074T (98.86 %) and Companilactobacillus heilongiiangensis S4-3T (98.66 %). However, average nucleotide identity and in silico DNA–DNA hybridization values for these type strains were in the range of 79.90–92.93 % and 23.80–49.30 %, respectively, which offer evidence that strain NFFJ11T belongs to a novel species of the genus Companilactobacillus . The cell-wall peptidoglycan type was A4α (l-Lys–d-Asp) and the G+C content of the genomic DNA was 35.7 mol%. The main fatty acids of strain NFFJ11T were C18 : 1  ω9c (43.3 %), C16 : 0 (20.1 %) and summed feature 7 (18.3 %; comprising any combination of C19 : 1  ω7c, C19 : 1  ω6c and C19 : 0 cyclo ω10c). Through polyphasic taxonomic analysis, it was observed that strain NFFJ11T represents a novel species belonging to the genus Companilactobacillus , for which the name Companilactobacillus pabuli sp. nov. is proposed. The type strain is NFFJ11T (= KACC 21771T= JCM 34088T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 484-489 ◽  
Author(s):  
Hangsak Huy ◽  
Long Jin ◽  
Young-Ki Lee ◽  
Keun Chul Lee ◽  
Jung-Sook Lee ◽  
...  

A Gram-negative, non-motile, non-spore-forming and rod-shaped bacterial strain, CH15-1T, was isolated from a sediment sample taken from Daechung Reservoir, South Korea, during the late-blooming period of cyanobacteria. Strain CH15-1T grew optimally at pH 7.0 and 30 °C. A phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain CH15-1T belongs to the genus Arenimonas with the similarity range from 92.6–97.4 % and is closely related to Arenimonas oryziterrae YC6267T (97.4 %), Arenimonas composti TR7-09T (95.4 %), Arenimonas metalli CF5-1T (94.7 %), Arenimonas malthae CC-JY-1T (94.6 %) and Arenimonas donghaensis HO3-R19T (92.6 %). However, the DNA–DNA hybridization between strain CH15-1T and the closest strain, Arenimonas oryziterrae YC6267T, was 8.9–12.9 %. The DNA G+C content was 63.9 mol% compared to A. oryziterrae YC626T, 65.8 mol%. Strain CH15-1T included Q-8 as the major ubiquinone and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine as the major polar lipids. The major fatty acids (>5 %) were iso-C15 : 0, iso-C16 : 0, iso-C14 : 0, iso-C11 : 0 3-OH, iso-C17 : 0 and summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl). On the basis of phylogenetic, phenotypic and genetic data, strain CH15-1T was classified in the genus Arenimonas as a member of a novel species, for which the name Arenimonas daechungensis sp. nov. is proposed. The type strain is CH15-1T ( = KCTC 23553T = DSM 24763T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5958-5963
Author(s):  
Yuh Morimoto ◽  
Mari Tohya ◽  
Zulipiya Aibibula ◽  
Tadashi Baba ◽  
Hiroyuki Daida ◽  
...  

The taxonomic classification of Pseudomonas species has been revised and updated several times. This study utilized average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) cutoff values of 95 and 70 %, respectively, to re-identify the species of strains deposited in GenBank as P. aeruginosa , P. fluorescens and P. putida . Of the 264 deposited P. aeruginosa strains, 259 were correctly identified as P. aeruginosa , but the remaining five were not. All 28 deposited P. fluorescens strains had been incorrectly identified as P. fluorescens . Four of these strains were re-identified, including two as P. kilonensis and one each as P. aeruginosa and P. brassicacearum , but the remaining 24 could not be re-identified. Similarly, all 35 deposited P. putida strains had been incorrectly identified as P. putida . Nineteen of these strains were re-identified, including 12 as P. alloputida , four as P. asiatica and one each as P. juntendi , P. monteilii and P. mosselii . These results strongly suggest that Pseudomonas bacteria should be identified using ANI and dDDH analyses based on whole genome sequencing when Pseudomonas species are initially deposited in GenBank/DDBJ/EMBL databases.


Author(s):  
Arnau Casanovas-Massana ◽  
Antony T. Vincent ◽  
Pascale Bourhy ◽  
Vasantha Kumari Neela ◽  
Frederic J. Veyrier ◽  
...  

Leptospira dzianensis and Leptospira putramalaysiae were recently described as novel species and published almost concurrently with Leptospira yasudae and Leptospira stimsonii . Genome comparisons based on average nucleotide identity of the type strain genomes indicate that L. dzianensis and L. putramalaysiae are conspecific with L. yasudae and L. stimsonii , respectively. Based on the rules of priority, L. dzianensis should be reclassified as a later heterotypic synonym of L. yasudae , and L. putramalaysiae should be reclassified as a later heterotypic synonym of L. stimsonii .


Author(s):  
Atena Sadat Sombolestani ◽  
Ilse Cleenwerck ◽  
Margo Cnockaert ◽  
Wim Borremans ◽  
Anneleen D. Wieme ◽  
...  

Strains LMG 1744T, LMG 1745, LMG 31484T, LMG 1764T and R-71646 were isolated from rotting fruits and fermented food products. A phylogenomic analysis based on 107 single-copy core genes revealed that they grouped in a Gluconobacter lineage comprising Gluconobacter oxydans , Gluconobacter roseus , Gluconobacter sphaericus, Gluconobacter kanchanaburiensis, Gluconobacter albidus, Gluconobacter cerevisiae, Gluconobacter kondonii and Gluconobacter aidae . OrthoANIu and digital DNA hybridization analyses demonstrated that these five strains represented three novel Gluconobacter species, which could be differentiated from the type strains of closely related Gluconobacter species by multiple phenotypic characteristics. We therefore propose to classify strains LMG 1744T and LMG 1745 in the novel species Gluconobacter cadivus sp. nov., with LMG 1744T (=CECT 30141T) as the type strain; to classify strain LMG 31484T as the novel species Gluconobacter vitians sp. nov., with LMG 31484T (=CECT 30132T) as the type strain; and to classify strains LMG 1764T and R-71646 in the novel species Gluconobacter potus sp. nov., with LMG 1764T (=CECT 30140T) as the type strain.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1297-1303 ◽  
Author(s):  
Keun Sik Baik ◽  
Han Na Choe ◽  
Seong Chan Park ◽  
Yeoung Min Hwang ◽  
Eun Mi Kim ◽  
...  

Two yellow-pigmented, Gram-reaction-negative strains, designated 01SU5-PT and 03SU3-PT, were isolated from the freshwater of Woopo wetland, Republic of Korea. Both strains were aerobic, non-motile and catalase-negative. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates belong to the genus Sphingopyxis , showing the highest level of sequence similarity with respect to Sphingopyxis witflariensis W-50T (95.4–95.7 %). The two novel isolates shared 99.4 % sequence similarity. DNA–DNA hybridization between the isolates and the type strain of S. witflariensis clearly suggested that strains 01SU5-PT and 03SU3-PT represent two separate novel species in the genus Sphingopyxis . The two strains displayed different fingerprints after PCR analysis using the repetitive primers BOX, ERIC and REP. Several phenotypic characteristics served to differentiate these two isolates from recognized members of the genus Sphingopyxis . The data from the polyphasic study presented here indicated that strains 01SU5-PT and 03SU3-PT should be classified as representing novel species in the genus Sphingopyxis , for which the names Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., respectively, are proposed. The type strain of Sphingopyxis rigui sp. nov. is 01SU5-PT ( = KCTC 23326T = JCM 17509T) and the type strain of Sphingopyxis wooponensis sp. nov. is 03SU3-PT ( = KCTC 23340T = JCM 17547T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3402-3410 ◽  
Author(s):  
Roger Stephan ◽  
Christopher J. Grim ◽  
Gopal R. Gopinath ◽  
Mark K. Mammel ◽  
Venugopal Sathyamoorthy ◽  
...  

Recently, a taxonomical re-evaluation of the genus Enterobacter , based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris , Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter . In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA–DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter , nor do they belong to the re-evaluated genus Enterobacter . Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05T = LMG 24057T = DSM 19144T) and Franconibacter helveticus comb. nov. (type strain 513/05T = LMG 23732T = DSM 18396T), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05T = LMG 23730T = DSM 18397T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 177-182 ◽  
Author(s):  
Arwa Al-Dilaimi ◽  
Hanna Bednarz ◽  
Alexander Lömker ◽  
Karsten Niehaus ◽  
Jörn Kalinowski ◽  
...  

A strain of a species of the genus Corynebacterium , designated AJ 3170T, was isolated during the 1980s from putrefied bananas. Since then, there have been no further updates on the description of the strain or its phylogenetic classification. However, phylogenetic analysis of this strain using 16S rRNA and in silico DNA–DNA hybridization has confirmed that it is a member of the genus Corynebacterium and that strain AJ 3170T clusters with Corynebacterium variabile DSM 44702T, Corynebacterium terpenotabidum Y-11T and Corynebacterium nuruki S6-4T in one subgroup. Furthermore, a combination of enzymatic, chemical, and morphological characterization techniques was applied in order to describe strain AJ 3170T further. The strain grew well at pH values of 6–10 and at temperatures of 30–41 °C. The major fatty acids were C16 : 0 (42.15 %), C18 : 1ω9c (41.6 %) and C18 : 0 10-methyl (TBSA) (8.56 %). The whole-cell sugars were determined to comprise galactose, arabinose and ribose. On the basis of this phenotypic, chemotaxonomic and phylogenetic characterization, it is proposed that strain AJ 3170T represents a novel species, for which the name Corynebacterium glyciniphilum sp. nov. is proposed; the type strain is AJ 3170T ( = DSM 45795T = ATCC 21341T).


Sign in / Sign up

Export Citation Format

Share Document