The role of interferon regulatory factor 7 in the pathogenicity and immunogenicity of rabies virus in a mouse model

2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Caiqian Wang ◽  
Lei Lv ◽  
Qiong Wu ◽  
Zongmei Wang ◽  
Zhaochen Luo ◽  
...  

Rabies is a zoonotic disease caused by the rabies virus (RABV). RABV can lead to fatal encephalitis and is still a serious threat in most parts of the world. Interferon regulatory factor 7 (IRF7) is the main transcriptional regulator of type I IFN, and it is crucial for the induction of IFNα/β and the type I IFN-dependent immune response. In this study, we focused on the role of IRF7 in the pathogenicity and immunogenicity of RABV using an IRF7-/- mouse model. The results showed that the absence of IRF7 made mice more susceptible to RABV, because IRF7 restricted the replication of RABV in the early stage of infection. IRF7 deficiency affected the recruitment of plasmacytoid dendritic cells to the draining lymph nodes (dLNs), reduced the production of type I IFN and expression of IFN-stimulated genes. Furthermore, we found that the ability to produce specific RABV-neutralizing antibody was impaired in IRF7-/- mice. Consistently, IRF7 deficiency affected the recruitment of germinal-centre B cells to dLNs, and the generation of plasma cells and RABV-specific antibody secreting cells. Moreover, the absence of IRF7 downregulated the induction of IFN-γ and reduced type 1 T helper cell (Th1)-dependent antibody production. Collectively, our findings demonstrate that IRF7 promotes humoral immune responses and compromises the pathogenicity of RABV in a mouse model.

2019 ◽  
Vol 78 (11) ◽  
pp. 1583-1591 ◽  
Author(s):  
Minghua Wu ◽  
Brian Skaug ◽  
Xiongjie Bi ◽  
Tingting Mills ◽  
Gloria Salazar ◽  
...  

ObjectivesThere is considerable evidence that implicates dysregulation of type I interferon signalling (or type I IFN signature) in the pathogenesis of systemic sclerosis (SSc). Interferon regulatory factor 7 (IRF7) has been recognised as a master regulator of type I IFN signalling. The objective of this study was to elucidate the role of IRF7 in dermal fibrosis and SSc pathogenesis.MethodsSSc and healthy control skin biopsies were investigated to determine IRF7 expression and activation. The role of IRF7 in fibrosis was investigated using IRF7 knockout (KO) mice in the bleomycin-induced and TSK/+mouse models. In vitro experiments with dermal fibroblasts from patients with SSc and healthy controls were performed.ResultsIRF7 expression was significantly upregulated and activated in SSc skin tissue and explanted SSc dermal fibroblasts compared with unaffected, matched controls. Moreover, IRF7 expression was stimulated by IFN-α in dermal fibroblasts. Importantly, IRF7 co-immunoprecipitated with Smad3, a key mediator of transforming growth factor (TGF)-β signalling, and IRF7 knockdown reduced profibrotic factors in SSc fibroblasts. IRF7 KO mice demonstrated attenuated dermal fibrosis and inflammation compared with wild-type mice in response to bleomycin. Specifically, hydroxyproline content, dermal thickness as well as Col1a2, ACTA2 and interleukin-6 mRNA levels were significantly attenuated in IRF7 KO mice skin tissue. Furthermore, IRF7 KO in TSK/+mice attenuated hydroxyproline content, subcutaneous hypodermal thickness, Col1a2 mRNA as well as α-smooth muscle actin and fibronectin expression.ConclusionsIRF7 is upregulated in SSc skin, interacts with Smad3 and potentiates TGF-β-mediated fibrosis, and therefore may represent a promising therapeutic target in SSc.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
K. E. Johnson ◽  
C. A. Aurubin ◽  
C. N. Jondle ◽  
P. T. Lange ◽  
V. L. Tarakanova

ABSTRACT Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with a variety of malignancies, including lymphomas. Interferon regulatory factor 7 (IRF-7) is an innate immune transcription factor that restricts acute replication of diverse viruses, including murine gammaherpesvirus 68 (MHV68). Importantly, very little is known about the role of IRF-7 during chronic virus infections. In this study, we demonstrate that IRF-7 attenuates chronic infection by restricting establishment of gammaherpesvirus latency in the peritoneal cavity and, to a lesser extent, viral reactivation in the spleen. Despite the classical role of IRF-7 as a stimulator of type I interferon (IFN) transcription, there were no global effects on the expression of IFN-induced genes (ISGs) in the absence of IRF-7, with only a few ISGs showing attenuated expression in IRF-7-deficient peritoneal cells. Further, IRF-7 expression was dispensable for the induction of a virus-specific CD8 T cell response. In contrast, IRF-7 expression restricted latent gammaherpesvirus infection in the peritoneal cavity under conditions where the viral latent reservoir is predominantly hosted by peritoneal B cells. This report is the first demonstration of the antiviral role of IRF-7 during the chronic stage of gammaherpesvirus infection. IMPORTANCE The innate immune system of the host is critical for the restriction of acute viral infections. In contrast, the role of the innate immune network during chronic herpesvirus infection remains poorly defined. Interferon regulatory factor 7 (IRF-7) is a transcription factor with many target genes, including type I interferons (IFNs). In this study, we show that the antiviral role of IRF-7 continues into the chronic phase of gammaherpesvirus infection, wherein IRF-7 restricts the establishment of viral latency and viral reactivation. This study is, to our knowledge, the first to define the role of IRF-7 in chronic virus infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yalan Lai ◽  
Xiaoyan Xia ◽  
Anchun Cheng ◽  
Mingshu Wang ◽  
Xumin Ou ◽  
...  

Duck hepatitis A virus (DHAV), which mainly infects 1- to 4-week-old ducklings, has a fatality rate of 95% and poses a huge economic threat to the duck industry. However, the mechanism by which DHAV-1 regulates the immune response of host cells is rarely reported. This study examined whether DHAV-1 contains a viral protein that can regulate the innate immunity of host cells and its specific regulatory mechanism, further exploring the mechanism by which DHAV-1 resists the host immune response. In the study, the dual-luciferase reporter gene system was used to screen the viral protein that regulates the host innate immunity and the target of this viral protein. The results indicate that the DHAV-1 3C protein inhibits the pathway upstream of interferon (IFN)-β by targeting the interferon regulatory factor 7 (IRF7) protein. In addition, we found that the 3C protein inhibits the nuclear translocation of the IRF7 protein. Further experiments showed that the 3C protein interacts with the IRF7 protein through its N-terminus and that the 3C protein degrades the IRF7 protein in a caspase 3-dependent manner, thereby inhibiting the IFN-β-mediated antiviral response to promote the replication of DHAV-1. The results of this study are expected to serve as a reference for elucidating the mechanisms of DHAV-1 infection and pathogenicity.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Zhaochen Luo ◽  
Lei Lv ◽  
Yingying Li ◽  
Baokun Sui ◽  
Qiong Wu ◽  
...  

ABSTRACT Rabies, caused by rabies virus (RABV), is a fatal encephalitis in humans and other mammals, which continues to present a public health threat in most parts of the world. Our previous study demonstrated that Toll-like receptor 7 (TLR7) is essential in the induction of anti-RABV antibodies via the facilitation of germinal center formation. In the present study, we investigated the role of TLR7 in the pathogenicity of RABV in a mouse model. Using isolated plasmacytoid dendritic cells (pDCs), we demonstrated that TLR7 is an innate recognition receptor for RABV. When RABV invaded from the periphery, TLR7 detected viral single-stranded RNA and triggered immune responses that limited the virus’s entry into the central nervous system (CNS). When RABV had invaded the CNS, its detection by TLR7 led to the production of cytokines and chemokines and an increase the permeability of the blood-brain barrier. Consequently, peripheral immune cells, including pDCs, macrophages, neutrophils, and B cells infiltrated the CNS. While this immune response, triggered by TLR7, helped to clear viruses, it also increased neuroinflammation and caused immunopathology in the mouse brain. Our results demonstrate that TLR7 is an innate recognition receptor for RABV, which restricts RABV invasion into the CNS in the early stage of viral infection but also contributes to immunopathology by inducing neuroinflammation. IMPORTANCE Developing targeted treatment for RABV requires understanding the innate immune response to the virus because early virus clearance is essential for preventing the fatality when the infection has progressed to the CNS. Previous studies have revealed that TLR7 is involved in the immune response to RABV. Here, we establish that TLR7 recognizes RABV and facilitates the production of some interferon-stimulated genes. We also demonstrated that when RABV invades into the CNS, TLR7 enhances the production of inflammatory cytokines which contribute to immunopathology in the mouse brain. Taken together, our findings suggest that treatments for RABV must consider the balance between the beneficial and harmful effects of TLR7-triggered immune responses.


2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Zixiang Zhu ◽  
Pengfei Li ◽  
Fan Yang ◽  
Weijun Cao ◽  
Xiangle Zhang ◽  
...  

ABSTRACTPeste des petits ruminants virus (PPRV) is the etiological agent of peste des petits ruminants, causing acute immunosuppression in its natural hosts. However, the molecular mechanisms by which PPRV antagonizes the host immune responses have not been fully characterized. In particular, how PPRV suppresses the activation of the host RIG-I-like receptor (RLR) pathway has yet to be clarified. In this study, we demonstrated that PPRV infection significantly suppresses RLR pathway activation and type I interferon (IFN) production and identified PPRV N protein as an extremely important antagonistic viral factor that suppresses beta interferon (IFN-β) and IFN-stimulated gene (ISG) expression. A detailed analysis showed that PPRV N protein inhibited type I IFN production by targeting interferon regulatory factor 3 (IRF3), a key molecule in the RLR pathway required for type I IFN induction. PPRV N protein interacted with IRF3 (but not with other components of the RLR pathway, including MDA5, RIG-I, VISA, TBK1, and MITA) and abrogated the phosphorylation of IRF3. As expected, PPRV N protein also considerably impaired the nuclear translocation of IRF3. The TBK1-IRF3 interaction was involved significantly in IRF3 phosphorylation, and we showed that PPRV N protein inhibits the association between TBK1 and IRF3, which in turn inhibits IRF3 phosphorylation. The amino acid region 106 to 210 of PPRV N protein was determined to be essential for suppressing the nuclear translocation of IRF3 and IFN-β production, and the 140 to 400 region of IRF3 was identified as the crucial region for the N-IRF3 interaction. Together, our findings demonstrate a new mechanism evolved by PPRV to inhibit type I IFN production and provide structural insights into the immunosuppression caused by PPRV.IMPORTANCEPeste des petits ruminants is a highly contagious animal disease affecting small ruminants, which threatens both small livestock and endangered susceptible wildlife populations in many countries. The causative agent, peste des petits ruminants virus (PPRV), often causes acute immunosuppression in its natural hosts during infection. Here, for the first time, we demonstrate that N protein, the most abundant protein of PPRV, plays an extremely important role in suppression of interferon regulatory factor 3 (IRF3) function and type I interferon (IFN) production by interfering with the formation of the TBK1-IRF3 complex. This study explored a novel antagonistic mechanism of PPRV.


2008 ◽  
Vol 82 (17) ◽  
pp. 8465-8475 ◽  
Author(s):  
Stephane Daffis ◽  
Melanie A. Samuel ◽  
Mehul S. Suthar ◽  
Brian C. Keller ◽  
Michael Gale ◽  
...  

ABSTRACT Type I interferon (IFN-α/β) comprises a family of immunomodulatory cytokines that are critical for controlling viral infections. In cell culture, many RNA viruses trigger IFN responses through the binding of RNA recognition molecules (RIG-I, MDA5, and TLR-3) and induction of interferon regulatory factor IRF-3-dependent gene transcription. Recent studies with West Nile virus (WNV) have shown that type I IFN is essential for restricting infection and that a deficiency of IRF-3 results in enhanced lethality. However, IRF-3 was not required for optimal systemic IFN production in vivo or in vitro in macrophages. To begin to define the transcriptional factors that regulate type I IFN after WNV infection, we evaluated IFN induction and virus control in IRF-7−/− mice. Compared to congenic wild-type mice, IRF-7−/− mice showed increased lethality after WNV infection and developed early and elevated WNV burdens in both peripheral and central nervous system tissues. As a correlate, a deficiency of IRF-7 blunted the systemic type I IFN response in mice. Consistent with this, IFN-α gene expression and protein production were reduced and viral titers were increased in IRF-7−/− primary macrophages, fibroblasts, dendritic cells, and cortical neurons. In contrast, in these cells the IFN-β response remained largely intact. Our data suggest that the early protective IFN-α response against WNV occurs through an IRF-7-dependent transcriptional signal.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 643 ◽  
Author(s):  
Pei-Ming Yang ◽  
Yao-Yu Hsieh ◽  
Jia-Ling Du ◽  
Shih-Chieh Yen ◽  
Chien-Fu Hung

Immunogenic cell death (ICD) refers to a unique form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Accumulating evidence indicates that the efficacy of conventional anticancer agents relies on not only their direct cytostatic/cytotoxic effects but also the activation of antitumor ICD. Common anticancer ICD inducers include certain chemotherapeutic agents (such as anthracyclines, oxaliplatin, and bortezomib), radiotherapy, photodynamic therapy (PDT), and oncolytic virotherapies. However, most chemotherapeutic reagents are inefficient or fail to trigger ICD. Therefore, better understanding on the molecular determinants of chemotherapy-induced ICD will help in the development of more efficient combinational anticancer strategies through converting non- or relatively weak ICD inducers into bona fide ICD inducers. In this study, we found that sequential, but not concurrent, treatment of cancer cells with interferon β (IFNβ), a type I IFN, and cisplatin (an inefficient ICD inducer) can enhance the expression of ICD biomarkers in cancer cells, including surface translocation of an endoplasmic reticulum (ER) chaperone, calreticulin (CRT), and phosphorylation of the eukaryotic translation initiation factor alpha (eIF2α). These results suggest that exogenous IFNβ may activate molecular determinants that convert cisplatin into an ICD inducer. Further bioinformatics and in vitro experimental analyses found that interferon regulatory factor 1 (IRF1) acted as an essential mediator of surface CRT exposure by sequential IFNβ-cisplatin combination. Our findings not only help to design more effective combinational anticancer therapy using IFNβ and cisplatin, but also provide a novel insight into the role of IRF1 in connecting the type I IFN responses and ICD.


2010 ◽  
Vol 78 (7) ◽  
pp. 3144-3153 ◽  
Author(s):  
Jennifer C. Miller ◽  
Heather Maylor-Hagen ◽  
Ying Ma ◽  
John H. Weis ◽  
Janis J. Weis

ABSTRACT We recently discovered a critical role for type I interferon (IFN) in the development of murine Lyme arthritis. Borrelia burgdorferi-mediated induction of IFN-responsive genes by bone marrow-derived macrophages (BMDMs) was dependent upon a functional type I IFN receptor but independent of Toll-like receptor 2 (TLR2), TLR4, TLR9, and the adapter molecule MyD88. We now demonstrate that induction of the IFN transcriptional profile in B. burgdorferi-stimulated BMDMs occurs independently of the adapter TRIF and of the cytoplasmic sensor NOD2. In contrast, B. burgdorferi-induced transcription of these genes was dependent upon a rapid STAT1 feedback amplification pathway. IFN profile gene transcription was IRF3 dependent but did not utilize B. burgdorferi-derived DNA or DNase-sensitive ligands. Instead, IFN-responsive gene expression could be induced by B. burgdorferi-derived RNA. Interferon regulatory factor 3 (IRF3)-dependent IFN profile gene transcription was also induced by sonicated bacteria, by the lipoprotein OspA, and by factors released into the BSKII medium during culture of B. burgdorferi. The IFN-stimulatory activity of B. burgdorferi culture supernatants was not destroyed by nuclease treatment. Nuclease digestion also had no effect on IFN profile induction mediated by sonicated B. burgdorferi. Thus, B. burgdorferi-derived RNA, OspA, and non-nucleic acid ligands present in both sonicated bacteria and B. burgdorferi culture medium contribute to type I IFN-responsive gene induction. These findings suggest that B. burgdorferi invasion of joint tissue and the resultant type I IFN induction associated with Lyme arthritis development may involve multiple triggering ligands.


Sign in / Sign up

Export Citation Format

Share Document