scholarly journals Dual Role of Toll-Like Receptor 7 in the Pathogenesis of Rabies Virus in a Mouse Model

2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Zhaochen Luo ◽  
Lei Lv ◽  
Yingying Li ◽  
Baokun Sui ◽  
Qiong Wu ◽  
...  

ABSTRACT Rabies, caused by rabies virus (RABV), is a fatal encephalitis in humans and other mammals, which continues to present a public health threat in most parts of the world. Our previous study demonstrated that Toll-like receptor 7 (TLR7) is essential in the induction of anti-RABV antibodies via the facilitation of germinal center formation. In the present study, we investigated the role of TLR7 in the pathogenicity of RABV in a mouse model. Using isolated plasmacytoid dendritic cells (pDCs), we demonstrated that TLR7 is an innate recognition receptor for RABV. When RABV invaded from the periphery, TLR7 detected viral single-stranded RNA and triggered immune responses that limited the virus’s entry into the central nervous system (CNS). When RABV had invaded the CNS, its detection by TLR7 led to the production of cytokines and chemokines and an increase the permeability of the blood-brain barrier. Consequently, peripheral immune cells, including pDCs, macrophages, neutrophils, and B cells infiltrated the CNS. While this immune response, triggered by TLR7, helped to clear viruses, it also increased neuroinflammation and caused immunopathology in the mouse brain. Our results demonstrate that TLR7 is an innate recognition receptor for RABV, which restricts RABV invasion into the CNS in the early stage of viral infection but also contributes to immunopathology by inducing neuroinflammation. IMPORTANCE Developing targeted treatment for RABV requires understanding the innate immune response to the virus because early virus clearance is essential for preventing the fatality when the infection has progressed to the CNS. Previous studies have revealed that TLR7 is involved in the immune response to RABV. Here, we establish that TLR7 recognizes RABV and facilitates the production of some interferon-stimulated genes. We also demonstrated that when RABV invades into the CNS, TLR7 enhances the production of inflammatory cytokines which contribute to immunopathology in the mouse brain. Taken together, our findings suggest that treatments for RABV must consider the balance between the beneficial and harmful effects of TLR7-triggered immune responses.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Mauricio M. Rodrigues ◽  
Ana Carolina Oliveira ◽  
Maria Bellio

In the past ten years, studies have shown the recognition ofTrypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses toT. cruziinfection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis).


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Caiqian Wang ◽  
Lei Lv ◽  
Qiong Wu ◽  
Zongmei Wang ◽  
Zhaochen Luo ◽  
...  

Rabies is a zoonotic disease caused by the rabies virus (RABV). RABV can lead to fatal encephalitis and is still a serious threat in most parts of the world. Interferon regulatory factor 7 (IRF7) is the main transcriptional regulator of type I IFN, and it is crucial for the induction of IFNα/β and the type I IFN-dependent immune response. In this study, we focused on the role of IRF7 in the pathogenicity and immunogenicity of RABV using an IRF7-/- mouse model. The results showed that the absence of IRF7 made mice more susceptible to RABV, because IRF7 restricted the replication of RABV in the early stage of infection. IRF7 deficiency affected the recruitment of plasmacytoid dendritic cells to the draining lymph nodes (dLNs), reduced the production of type I IFN and expression of IFN-stimulated genes. Furthermore, we found that the ability to produce specific RABV-neutralizing antibody was impaired in IRF7-/- mice. Consistently, IRF7 deficiency affected the recruitment of germinal-centre B cells to dLNs, and the generation of plasma cells and RABV-specific antibody secreting cells. Moreover, the absence of IRF7 downregulated the induction of IFN-γ and reduced type 1 T helper cell (Th1)-dependent antibody production. Collectively, our findings demonstrate that IRF7 promotes humoral immune responses and compromises the pathogenicity of RABV in a mouse model.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 72
Author(s):  
Lena Trifonov ◽  
Vadim Nudelman ◽  
Michael Zhenin ◽  
Guy Cohen ◽  
Krzysztof Jozwiak ◽  
...  

TLR4, a member of the toll-like receptors (TLRs) family, serves as a pattern recognition receptor in the innate immune response to different microbial pathogens. [...]


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mandi Liu ◽  
Yue Zhang ◽  
Di Zhang ◽  
Yun Bai ◽  
Guomei Liu ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC), an essential cause of post-weaning diarrhea (PWD) in piglets, leads to significant economic losses to the pig industry. The present study aims to identify the role of ETEC total RNA in eliciting immune responses to protect animals against ETEC infection. The results showed that the total RNA isolated from pig-derived ETEC K88ac strain effectively stimulated the IL-1β secretion of porcine intestinal epithelial cells (IPEC-J2). The mouse model immunized with ETEC total RNA via intramuscular injection (IM) or oral route (OR) was used to evaluate the protective efficiency of the ETEC total RNA. The results suggested that 70 μg ETEC total RNA administered by either route significantly promoted the production of the serum IL-1β and K88ac specific immunoglobulins (IgG, IgM, and IgA). Besides, the ETEC RNA administration augmented strong mucosal immunity by elevating K88ac specific IgA level in the intestinal fluid. Intramuscularly administered RNA induced a Th1/Th2 shift toward a Th2 response, while the orally administered RNA did not. The ETEC total RNA efficiently protected the animals against the ETEC challenge either by itself or as an adjuvant. The histology characterization of the small intestines also suggested the ETEC RNA administration protected the small intestinal structure against the ETEC infection. Particularly of note was that the immunity level and protective efficacy caused by ETEC RNA were dose-dependent. These findings will help understand the role of bacterial RNA in eliciting immune responses, and benefit the development of RNA-based vaccines or adjuvants.


2007 ◽  
Vol 204 (5) ◽  
pp. 1013-1024 ◽  
Author(s):  
Tatsukata Kawagoe ◽  
Shintaro Sato ◽  
Andreas Jung ◽  
Masahiro Yamamoto ◽  
Kosuke Matsui ◽  
...  

Interleukin-1 receptor–associated kinase 4 (IRAK-4) was reported to be essential for the Toll-like receptor (TLR)– and T cell receptor (TCR)–mediated signaling leading to the activation of nuclear factor κB (NF-κB). However, the importance of kinase activity of IRAK family members is unclear. In this study, we investigated the functional role of IRAK-4 activity in vivo by generating mice carrying a knockin mutation (KK213AA) that abrogates its kinase activity. IRAK-4KN/KN mice were highly resistant to TLR-induced shock response. The cytokine production in response to TLR ligands was severely impaired in IRAK-4KN/KN as well as IRAK-4−/− macrophages. The IRAK-4 activity was essential for the activation of signaling pathways leading to mitogen-activated protein kinases. TLR-induced IRAK-4/IRAK-1–dependent and –independent pathways were involved in early induction of NF-κB–regulated genes in response to TLR ligands such as tumor necrosis factor α and IκBζ. In contrast to a previous paper (Suzuki, N., S. Suzuki, D.G. Millar, M. Unno, H. Hara, T. Calzascia, S. Yamasaki, T. Yokosuka, N.J. Chen, A.R. Elford, et al. 2006. Science. 311:1927–1932), the TCR signaling was not impaired in IRAK-4−/− and IRAK-4KN/KN mice. Thus, the kinase activity of IRAK-4 is essential for the regulation of TLR-mediated innate immune responses.


2021 ◽  
Author(s):  
Chen Chen ◽  
Chengguang Zhang ◽  
Haoqi Li ◽  
Zongmei Wang ◽  
Yueming Yuan ◽  
...  

Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expression of pattern recognition receptors (PRRs) also causes diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not been revealed yet. Based on TLR4-deficient ( TLR4 -/- ) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type-2 dendritic cells (CD8α - CD11b + cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of Tfh cells promotes the proliferation of germinal centre (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4 deficiency ( TLR4 -/- ) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG, compared with that occurred in wild-type (WT) mice. As a consequence, TLR4 -/- mice exhibited higher mortality than WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α + CD11b - ), a subset of cDCs known to induce CD4 + T cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Daiko Wakita ◽  
Yosuke Kurashima ◽  
Yoshihiro Takasato ◽  
Youngho Lee ◽  
Kenichi Shimada ◽  
...  

Background: KD is the leading cause of acquired heart disease in the US. We have demonstrated the critical role of innate immune responses via IL-1R/MyD88 signaling in the Lactobacillus casei cell wall extract (LCWE)-induced KD mouse model. The diversity and composition of microflora (both bacterial and fungal) have been associated with the regulation and alterations of immune responses and various pathologies. However, the role of gut microbiota in immunopathology of KD has not been investigated. Objective: To evaluate the role of gut microflora in development of coronary arteritis, and vascular abnormalities in KD mouse model. Methods and Results: We investigated the role of gut microflora in the LCWE-induced KD mouse model, using Specific-Pathogen Free (SPF) and Germ Free (GF) mice (C57BL/6). GF mice showed a significant decrease of KD lesions, including coronary arteritis compared with SPF mice. The development of LCWE-induced AAA, which we recently discovered in this mouse model, was also markedly diminished in GF mice. In addition to GF mice, we also investigated the specific role of commensal bacteria and/or fungi, and determined whether altered microorganism burden in this KD mouse model contributes to disease severity. To deplete bacteria and/or fungi in the gut microflora, we exposed pregnant SPF mice and their offspring to antibiotics cocktail (Abx) or antifungal drug (fluconazole; Fluc) in their drinking water for 5 wks and induced KD. The mice treated with Abx or Fluc had significantly reduced coronary arteritis and AAA compared to controls. The Abx plus Fluc administration showed marked decrease of KD vasculitis. Conclusions: We demonstrate here that gut microflora play a critical role in the development of KD vasculitis in LCWE-induced mouse model. Our results suggest that both bacteria and fungi in the intestinal microbiota may control the induction and severity of KD vasculitis. These findings provide a new perspective on the potential role of the microbiome in KD pathogenesis and may offer new diagnostic and therapeutic strategies for KD patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256155
Author(s):  
Intakhar Ahmad ◽  
Stig Wergeland ◽  
Eystein Oveland ◽  
Lars Bø

Incomplete remyelination is frequent in multiple sclerosis (MS)-lesions, but there is no established marker for recent remyelination. We investigated the role of the oligodendrocyte/myelin protein ermin in de- and remyelination in the cuprizone (CPZ) mouse model, and in MS. The density of ermin+ oligodendrocytes in the brain was significantly decreased after one week of CPZ exposure (p < 0.02). The relative proportion of ermin+ cells compared to cells positive for the late-stage oligodendrocyte marker Nogo-A increased at the onset of remyelination in the corpus callosum (p < 0.02). The density of ermin-positive cells increased in the corpus callosum during the CPZ-phase of extensive remyelination (p < 0.0001). In MS, the density of ermin+ cells was higher in remyelinated lesion areas compared to non-remyelinated areas both in white- (p < 0.0001) and grey matter (p < 0.0001) and compared to normal-appearing white matter (p < 0.001). Ermin immunopositive cells in MS-lesions were not immunopositive for the early-stage oligodendrocyte markers O4 and O1, but a subpopulation was immunopositive for Nogo-A. The data suggest a relatively higher proportion of ermin immunopositivity in oligodendrocytes compared to Nogo-A indicates recent or ongoing remyelination.


2021 ◽  
pp. 8-15
Author(s):  
Prabir Chakravarty Ph.D

COVID-19 is fast spreading around the globe in a highly contagious manner. Until date there are no therapeutic agents/vaccines developed which could control this highly infectious virus from spreading among human population. During early stage of COVID-19, stringent Lockdown was implemented throughout India on 25 March, 2020. Our earlier findings reflected that early introduction of complete Lockdown significantly controlled the spread of COVID-19 in the population immediately after Lockdown. It was hypothesized that immune response was responsible for the control of the spread of COVID-19. To further evaluate the role of immune response/passive vaccination, data from COVID-19 positive/recovered individuals in eight states were assessed for the month of December, 2020. The results from our study reflect that in all the eight states, there was marked decrease in the number of confirmed COVID-19 cases after Lockdown, with one region recording no COVID-19 cases. All the states studied had very low number of active cases; the minimum number being two even after such a long period from the start of this disease. A negative correlation between number of recovered individuals and number of active cases of COVID-19 was noted. Here we hypothesize that passive immunization may have played a significant role in controlling SARS-CoV-2. It could be inferred from this study that implementation of prolonged Lockdown was able attenuate the virus and create an environment for the development of passive immunity in the section of population studied.


Sign in / Sign up

Export Citation Format

Share Document