scholarly journals Lysogeny and bacteriophage host range within the Burkholderia cepacia complex

2003 ◽  
Vol 52 (6) ◽  
pp. 483-490 ◽  
Author(s):  
Ross Langley ◽  
Dervla T. Kenna ◽  
Peter Vandamme ◽  
Rebecca Ure ◽  
John R. W. Govan

The Burkholderia cepacia complex comprises a group of nine closely related species that have emerged as life-threatening pulmonary pathogens in immunocompromised patients, particularly individuals with cystic fibrosis or chronic granulomatous disease. Attempts to explain the genomic plasticity, adaptability and virulence of the complex have paid little attention to bacteriophages, particularly the potential contribution of lysogenic conversion and transduction. In this study, lysogeny was observed in 10 of 20 representative strains of the B. cepacia complex. Three temperate phages and five lytic phages isolated from soils, river sediments or the plant rhizosphere were chosen for further study. Six phages exhibited T-even morphology and two were lambda-like. The host range of individual phages, when tested against 66 strains of the B. cepacia complex and a representative panel of other pseudomonads, was not species-specific within the B. cepacia complex and, in some phages, included Burkholderia gladioli and Pseudomonas aeruginosa. These new data indicate a potential role for phages of the B. cepacia complex in the evolution of these soil bacteria as pathogens of plants, humans and animals, and as novel therapeutic agents.


2000 ◽  
Vol 38 (1) ◽  
pp. 282-285
Author(s):  
Paul W. Whitby ◽  
Lauren C. Pope ◽  
Karen B. Carter ◽  
John J. LiPuma ◽  
Terrence L. Stull

ABSTRACT Burkholderia gladioli colonizes the respiratory tracts of patients with cystic fibrosis and chronic granulomatous disease. However, due to the high degree of phenotypic similarity between this species and closely related species in the Burkholderia cepacia complex, accurate identification is difficult. Incorrect identification of these species may have serious repercussions for the management of patients with cystic fibrosis. To develop an accurate procedure for the identification of B. gladioli , a molecular method to discriminate between this species and other species commonly isolated from the sputa of patients with cystic fibrosis was investigated. The 23S ribosomal DNA was cloned from several clinical isolates of B. gladioli , and the nucleotide sequence was determined. Computer-assisted sequence comparisons indicated four regions of the 23S rRNA specific for this species; these regions were used to design three primer pairs for species-specific PCR. Two of the primer pairs showed 100% sensitivity and specificity for B. gladioli when tested against a panel of 47 isolates comprising 19 B. gladioli isolates and 28 isolates of 16 other bacterial species. One of the primer pairs was further assessed for species specificity by using a panel of 102 isolates obtained from the Burkholderia cepacia Research Laboratory and Repository. The species-specific PCR was positive for 70 of 74 isolates of B. gladioli and was negative for all other bacterial species examined. Overall, this primer pair displayed a sensitivity and specificity of 96% (89 of 93) and 100%, respectively. These data demonstrate the potential of species-specific PCR for the identification of B. gladioli .



2000 ◽  
Vol 38 (5) ◽  
pp. 1876-1884 ◽  
Author(s):  
Sylvain Brisse ◽  
Cees M. Verduin ◽  
Dana Milatovic ◽  
Ad Fluit ◽  
Jan Verhoef ◽  
...  

Several species belonging to the genus Burkholderia are clinically relevant, opportunistic pathogens that inhabit major environmental reservoirs. Consequently, the availability of means for adequate identification and epidemiological characterization of individual environmental or clinical isolates is mandatory. In the present communication we describe the use of the Riboprinter microbial characterization system (Qualicon, Warwick, United Kingdom) for automated ribotyping of 104 strains of Burkholderia species from diverse sources, including several publicly accessible collections. The main outcome of this analysis was that all strains were typeable and that strains of Burkholderia gladioli and of each species of the B. cepacia complex, includingB. multivorans, B. stabilis, and B. vietnamiensis, were effectively discriminated. Furthermore, different ribotypes were discerned within each species. Ribotyping results were in general agreement with strain classification based on restriction fragment analysis of 16S ribosomal amplicons, but the resolution of ribotyping was much higher. This enabled automated molecular typing below the species level. Cluster analysis of the patterns obtained by ribotyping (riboprints) showed that withinB. gladioli, B. multivorans, and B. cepacia genomovar VI, the different riboprints identified always clustered together. Riboprints of B. cepacia genomovars I and III, B. stabilis, and B. vietnamiensis did not show distinct clustering but rather exhibited the formation of loose assemblages within which several smaller, genomovar-specific clusters were delineated. Therefore, ribotyping proved useful for genomovar identification. Analysis of serial isolates from individual patients demonstrated that infection with a single ribotype had occurred, despite minor genetic differences that were detected by pulsed-field gel electrophoresis of DNA macrorestriction fragments. The automated approach allows very rapid and reliable identification and epidemiological characterization of strains and generates an easily manageable database suited for expansion with information on additional bacterial isolates.



2000 ◽  
Vol 38 (8) ◽  
pp. 2962-2965 ◽  
Author(s):  
Paul W. Whitby ◽  
Karen B. Carter ◽  
Kenneth L. Hatter ◽  
John J. LiPuma ◽  
Terrence L. Stull

Definitive identification of the species in the Burkholderia cepacia complex by routine clinical microbiology methods is difficult. Phenotypic tests to identify B. multivorans andB. vietnamiensis have been established; more recent work indicates B. stabilis may also be identified by growth characteristics and biochemical tests. However, attempts to identify genomovars I and III have, thus far, proved unsuccessful. Previously, we demonstrated the utility of two primer pairs, directed to the rRNA operon, to specifically identify the B. cepacia complex in a PCR. One of these primer pairs, G1-G2, only amplified a DNA fragment from genomovars I and III and B. stabilis in a PCR with genomic DNA isolated from prototypical strains representing the five genomovars. Sequence analysis of the rRNA operon for all the genomovars indicated that this primer pair targeted a region shared by these isolates. Further analysis revealed a region of heterogeneity between genomovar III and B. stabilis internal to the amplified product of G1-G2. Primers designed to target this region were tested with prototypical strains following an initial amplification with the G1-G2 primer pair. New primers specific for the prototypical genomovar III and B. stabilis were designated SPR3 and SPR4, respectively. Analysis of 93 isolates representing 18 genomovar I, 13B. multivorans, 36 genomovar III, 11 B. stabilis, and 15 B. vietnamiensis isolates was performed. DNA from all isolates of genomovars I and III and B. stabilis was amplified by G1-G2. Genomovar III isolates yielded a product with SPR3/G1 while B. stabilis amplified with SPR4-G1. Genomovar I isolates were amplified by either SPR3-G1 or SPR4-G1, but not both. B. multivorans yielded a product with SPR3-G1 but not G1-G2, and B. vietnamiensis isolates were negative in all PCRs. Thus using an algorithm with G1-G2, SPR3-G1, and SPR4-G1 primers in a PCR analysis, genomovar III isolates can be separated from B. stabilis and the identity of B. multivorans and B. vietnamiensis can be confirmed.



2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Dale M. Mazer ◽  
Carol Young ◽  
Linda M. Kalikin ◽  
Theodore Spilker ◽  
John J. LiPuma

ABSTRACT We tested the activities of ceftolozane-tazobactam and 13 other antimicrobial agents against 221 strains of Burkholderia cepacia complex and Burkholderia gladioli. Most strains (82%) were cultured from persons with cystic fibrosis, and most (85%) were recovered since 2011. The ceftolozane-tazobactam MIC was ≤8 μg/ml for 77% of the strains. However, the MIC range was broad (≤0.5 to >64 μg/ml; MIC50/90, 2/32 μg/ml). Significant differences in susceptibility to some antimicrobial agents were observed between species.



2020 ◽  
Vol 25 (8) ◽  
pp. 730-734
Author(s):  
Joshua W. Branstetter ◽  
April Yarbrough ◽  
Claudette Poole

Burkholderia cepacia complex (Bcc) is an opportunistic pathogen, posing little risk to healthy individuals. The presentation of Bcc can vary from a virtually asymptomatic chronic infection, to an acute, life-threatening necrotizing pneumonia, acute respiratory distress syndrome, and bacteremia (cepacia syndrome) associated with a mortality rate up to 75%. We present the successful treatment of a 17-year-old male with chronic granulomatous disorder who presented with cepacia syndrome and confirmed Bcc pneumonia using a novel antimicrobial approach. Despite initial IV antimicrobial therapy, our patient continued to decline, developing hypotension requiring pressor support and eventually extracorporeal membrane oxygenation. An aggressive, multimechanistic approach including the combination of nebulized tobramycin, IV sulfamethoxazole-trimethoprim, ceftazidime, enteral minocycline, and corticosteroids was implemented. This multimechanistic antimicrobial approach in combination with systemic corticosteroids led to the successful treatment of cepacia syndrome in the setting of necrotizing pneumonia due to B cepacia with full respiratory recovery. We suggest that in patients with cepacia syndrome who continue to decline despite IV antimicrobial therapy, using multiple antimicrobial mechanisms of action may improve clinical outcomes.



2008 ◽  
Vol 76 (3) ◽  
pp. 1267-1275 ◽  
Author(s):  
Kimberley D. Seed ◽  
Jonathan J. Dennis

ABSTRACT Burkholderia is an important bacterial genus with a complex taxonomy that contains species of both ecological and pathogenic importance, including nine closely related species collectively termed the Burkholderia cepacia complex (BCC). In order to more thoroughly investigate the virulence of this bacterial complex of microorganisms, alternative infection models would be useful. To this end, we have adapted and developed the use of the Galleria mellonella wax moth larvae as a host for examining BCC infections. The experimental conditions affecting the BCC killing of the “wax worm” were optimized. BCC virulence levels were determined using 50% lethal doses, and differences were observed between both species and strains of the BCC. The BCC pathogenicity trends obtained compare favorably with results acquired using other published alternative infection models, as well as mammalian infection models. In addition, BCC killing activity was determined by directly measuring relative bacterial loads in three different BCC strains, thus demonstrating innate differences in BCC strain virulence. Finally, genetically mutated BCC strains were compared to a wild-type BCC strain in order to show concomitant reduction of BCC virulence and increased wax worm survival. For experimentation examining the virulent properties of the BCC, the wax worm has proven to be a useful alternative infection model.



2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Elise T. Zeiser ◽  
Scott A. Becka ◽  
Brigid M. Wilson ◽  
Melissa D. Barnes ◽  
John J. LiPuma ◽  
...  

ABSTRACT In persons with cystic fibrosis (CF), airway infection with Burkholderia cepacia complex (Bcc) species or Burkholderia gladioli presents a significant challenge due to inherent resistance to multiple antibiotics. Two chromosomally encoded inducible β-lactamases, a Pen-like class A and AmpC are produced in Bcc and B. gladioli. Previously, ceftazidime-avibactam demonstrated significant potency against Bcc and B. gladioli isolated from the sputum of individuals with CF; however, 10% of the isolates tested resistant to ceftazidime-avibactam. Here, we describe an alternative antibiotic combination to overcome ceftazidime-avibactam resistance. Antimicrobial susceptibility testing was performed on Bcc and B. gladioli clinical and control isolates. Biochemical analysis was conducted on purified PenA1 and AmpC1 β-lactamases from Burkholderia multivorans ATCC 17616. Analytic isoelectric focusing and immunoblotting were conducted on cellular extracts of B. multivorans induced by various β-lactams or β-lactam-β-lactamase inhibitor combinations. Combinations of piperacillin-avibactam, as well as piperacillin-tazobactam plus ceftazidime-avibactam (the clinically available counterpart), were tested against a panel of ceftazidime-avibactam nonsusceptible Bcc and B. gladioli. The piperacillin-avibactam and piperacillin-tazobactam-ceftazidime-avibactam combinations restored susceptibility to 99% of the isolates tested. Avibactam is a potent inhibitor of PenA1 (apparent inhibitory constant [Ki app] = 0.5 μM), while piperacillin was found to inhibit AmpC1 (Ki app = 2.6 μM). Moreover, piperacillin, tazobactam, ceftazidime, and avibactam, as well as combinations thereof, did not induce expression of blapenA1 and blaampC1 in the B. multivorans ATCC 17616 background. When ceftazidime-avibactam is combined with piperacillin-tazobactam, the susceptibility of Bcc and B. gladioli to ceftazidime and piperacillin is restored in vitro. Both the lack of blapenA1 induction and potent inactivation of PenA1 by avibactam likely provide the major contributions toward susceptibility. With in vivo validation, piperacillin-tazobactam-ceftazidime-avibactam may represent salvage therapy for individuals with CF and highly drug-resistant Bcc and B. gladioli infections.



Sign in / Sign up

Export Citation Format

Share Document