scholarly journals Distinguishing Species of the Burkholderia cepacia Complex and Burkholderia gladioli by Automated Ribotyping

2000 ◽  
Vol 38 (5) ◽  
pp. 1876-1884 ◽  
Author(s):  
Sylvain Brisse ◽  
Cees M. Verduin ◽  
Dana Milatovic ◽  
Ad Fluit ◽  
Jan Verhoef ◽  
...  

Several species belonging to the genus Burkholderia are clinically relevant, opportunistic pathogens that inhabit major environmental reservoirs. Consequently, the availability of means for adequate identification and epidemiological characterization of individual environmental or clinical isolates is mandatory. In the present communication we describe the use of the Riboprinter microbial characterization system (Qualicon, Warwick, United Kingdom) for automated ribotyping of 104 strains of Burkholderia species from diverse sources, including several publicly accessible collections. The main outcome of this analysis was that all strains were typeable and that strains of Burkholderia gladioli and of each species of the B. cepacia complex, includingB. multivorans, B. stabilis, and B. vietnamiensis, were effectively discriminated. Furthermore, different ribotypes were discerned within each species. Ribotyping results were in general agreement with strain classification based on restriction fragment analysis of 16S ribosomal amplicons, but the resolution of ribotyping was much higher. This enabled automated molecular typing below the species level. Cluster analysis of the patterns obtained by ribotyping (riboprints) showed that withinB. gladioli, B. multivorans, and B. cepacia genomovar VI, the different riboprints identified always clustered together. Riboprints of B. cepacia genomovars I and III, B. stabilis, and B. vietnamiensis did not show distinct clustering but rather exhibited the formation of loose assemblages within which several smaller, genomovar-specific clusters were delineated. Therefore, ribotyping proved useful for genomovar identification. Analysis of serial isolates from individual patients demonstrated that infection with a single ribotype had occurred, despite minor genetic differences that were detected by pulsed-field gel electrophoresis of DNA macrorestriction fragments. The automated approach allows very rapid and reliable identification and epidemiological characterization of strains and generates an easily manageable database suited for expansion with information on additional bacterial isolates.


Author(s):  
Scott A. Becka ◽  
Elise T. Zeiser ◽  
John J. LiPuma ◽  
Krisztina M. Papp-Wallace

The Burkholderia cepacia complex (Bcc) and Burkholderia gladioli are opportunistic pathogens that most commonly infect persons with cystic fibrosis or compromised immune systems. Members of the Burkholderia genus are intrinsically multidrug resistant (MDR), possessing both a PenA carbapenemase and an AmpC β-lactamase, which renders treatment of infection due to these species problematic. Here, we tested the β-lactam-β-lactamase inhibitor combination, imipenem-relebactam, against a panel of MDR Bcc and B. gladioli . The addition of relebactam to imipenem dramatically lowered the MICs for Bcc and B . gladioli with only 16% of isolates testing susceptible to imipenem vs. 71.3% being susceptible to the imipenem-relebactam combination. While ceftazidime-avibactam remained the most potent combination drug against this panel of Bcc and B. gladioli , imipenem-relebactam was active against 71.4% of the ceftazidime-avibactam-resistant isolates. Relebactam demonstrated potent inactivation of the Burkholderia multivorans PenA1 with a K i app value of 3.2 μM. Timed mass spectrometry revealed that PenA1 formed a very stable adduct with relebactam, without any detectable desulfation up to 24 hours. Based on our results, imipenem-relebactam may represent an alternative salvage therapy for Bcc and B . gladioli infection, especially in cases where the isolates are resistant to ceftazidime-avibactam.



2003 ◽  
Vol 52 (6) ◽  
pp. 483-490 ◽  
Author(s):  
Ross Langley ◽  
Dervla T. Kenna ◽  
Peter Vandamme ◽  
Rebecca Ure ◽  
John R. W. Govan

The Burkholderia cepacia complex comprises a group of nine closely related species that have emerged as life-threatening pulmonary pathogens in immunocompromised patients, particularly individuals with cystic fibrosis or chronic granulomatous disease. Attempts to explain the genomic plasticity, adaptability and virulence of the complex have paid little attention to bacteriophages, particularly the potential contribution of lysogenic conversion and transduction. In this study, lysogeny was observed in 10 of 20 representative strains of the B. cepacia complex. Three temperate phages and five lytic phages isolated from soils, river sediments or the plant rhizosphere were chosen for further study. Six phages exhibited T-even morphology and two were lambda-like. The host range of individual phages, when tested against 66 strains of the B. cepacia complex and a representative panel of other pseudomonads, was not species-specific within the B. cepacia complex and, in some phages, included Burkholderia gladioli and Pseudomonas aeruginosa. These new data indicate a potential role for phages of the B. cepacia complex in the evolution of these soil bacteria as pathogens of plants, humans and animals, and as novel therapeutic agents.



2021 ◽  
Author(s):  
Olga Mannweiler ◽  
Marta Pinto-Carbó ◽  
Martina Lardi ◽  
Kirsty Agnoli ◽  
Leo Eberl

Bacterial genomes can be methylated at particular motifs by methyltransferases (M). This DNA modification allows restriction endonucleases (R) to discriminate between self and foreign DNA. While the accepted primary function of such restriction modification (RM) systems is to degrade incoming foreign DNA, other roles of RM systems and lone R or M components have been found in genome protection, stability and the regulation of various phenotypes. The Burkholderia cepacia complex (Bcc) is a group of closely related opportunistic pathogens with biotechnological potential. Here, we constructed and analysed mutants lacking various RM components in the clinical Bcc isolate Burkholderia cenocepacia H111 and used SMRT sequencing of single mutants to assign the B. cenocepacia H111 Ms to their cognate motifs. DNA methylation is shown to affect biofilm formation, cell shape, motility, siderophore production and membrane vesicle production. Moreover, DNA methylation had a large effect on the maintenance of the Bcc virulence megaplasmid pC3. Our data also suggest that the gp51 M-encoding gene, which is essential in H111 and is located within a prophage, is required for maintaining the bacteriophage in a lysogenic state, thereby ensuring a constant, low level of phage production within the bacterial population. Importance While genome sequence determines an organism’s proteins, methylation of the nucleotides themselves can confer additional properties. In bacteria, Ms modify specific nucleotide motifs to allow discrimination of ‘self’ from ‘non-self’ DNA, e.g. from bacteriophages. Restriction enzymes detect ‘non-self’ methylation patterns and cut foreign DNA. Furthermore, methylation of promoter regions can influence gene expression and hence affect various phenotypes. In this study, we determined the methylated motifs of four strains from the Burkholderia cepacia complex of opportunistic pathogens. We deleted all genes encoding the restriction and modification components in one of these strains, Burkholderia cenocepacia H111. It is shown that DNA methylation affects various phenotypic traits, the most noteworthy being lysogenicity of a bacteriophage and maintenance of a virulence megaplasmid.



Author(s):  
John Govan ◽  
Andrew Jones

This chapter presents the microbiology of CF and describes the classical bacterial pathogens including Staphylococcus aureus, Haemophilus influenza, Pseudomonas aeruginosa and organisms of the Burkholderia cepacia complex. The dominant of these is P. aeruginosa. Infections with other opportunistic pathogens including non-tuberculous mycobacteria, Stenotrophomonas maltophila, and Achromobacter (Alcaligenes) xylosoxidans are also encountered. This chapter details measures to prevent the onset of chronic infection with these organisms include regular screening of respiratory tract samples for bacterial pathogens and the use of aggressive antibiotic therapy to eradicate initial infection before the pathogen can adapt to the environment of the CF lung. Patient-to-patient spread of transmissible strains of bacterial pathogens has led to the implementation of strict infection control measures at CF centres, including patient segregation. In addition to bacterial pathogens, the contribution of fungal infection in CF lung disease is increasingly recognized.



2020 ◽  
Vol 11 ◽  
Author(s):  
Jianglin Zhou ◽  
Hongguang Ren ◽  
Mingda Hu ◽  
Jing Zhou ◽  
Beiping Li ◽  
...  




2009 ◽  
Vol 26 (3) ◽  
pp. 443-450 ◽  
Author(s):  
Yuan Fang ◽  
Miao-miao Lou ◽  
Bin Li ◽  
Guan-Lin Xie ◽  
Fang Wang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document