Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of Mycoplasma pneumoniae

2005 ◽  
Vol 54 (11) ◽  
pp. 1037-1041 ◽  
Author(s):  
Ryoichi Saito ◽  
Yoshiki Misawa ◽  
Kyoji Moriya ◽  
Kazuhiko Koike ◽  
Kimiko Ubukata ◽  
...  

A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Mycoplasma pneumoniae was developed and evaluated. The assay specifically amplified only M. pneumoniae sequences, and no cross-reactivity was observed for other Mycoplasma species or respiratory bacterial species. The detection limit for this assay was found to be 2 × 102 copies, corresponding to 2–20 colour changing units of M. pneumoniae in 1 h, as observed in a real-time turbidimeter and electrophoretic analysis. The accuracy of the LAMP reaction was confirmed by restriction endonuclease analysis as well as direct sequencing of the amplified product. The assay was applied to 95 nasopharyngeal swab samples collected from patients or from healthy individuals, and compared to a real-time PCR assay in-house. A concordance of 100 % was observed between the two assays. The LAMP assay is easy to perform, shows a rapid reaction and is inexpensive. It may therefore be applied in the routine diagnosis of M. pneumoniae infection in the clinical laboratory.

Author(s):  
Maryam ARFAATABAR ◽  
Narjes NOORI GOODARZI ◽  
Davoud AFSHAR ◽  
Hamed MEMARIANI ◽  
Ghasem AZIMI ◽  
...  

  Background: Mycoplasma pneumoniae is a common cause of community-acquired pneumonia (CAP) worldwide, especially among children and debilitated populations. The present study aimed to investigate a loop-mediated isothermal amplification (LAMP) technique for rapid detection of M. pneumoniae in clini-cal specimens collected from patients with pneumonia. Methods: Throat swabs were collected from 110 outpatients who suffered from pneumonia. Throat swab samples were obtained from patients referred to the hospital outpatient clinics of Tehran University hospitals, Iran in 2017. The presence of M. pneumoniae in the clinical specimens was evaluated by LAMP, PCR and culture methods. Sensitivity and specificity of the LAMP and PCR assays were also determined. Results: Out of 110 specimens, LAMP assay detected M. pneumoniae in 35 specimens. Detection limit of the LAMP assay was determined to be 33fg /μL or ~ 40 genome copies/reaction. Moreover, no cross-reaction with genomic DNA from other bacteria was observed. Only 25 specimens were positive by the culture method. The congruence between LAMP assay and culture method was ‘substantial’ (κ=0.77). Specificity and sensitivity of LAMP assay were 88.2%, 100% in compare with culture. However, the con-gruence between LAMP assay and PCR assay was ‘almost perfect’ (κ=0.86). Specificity and sensitivity of LAMP assay were 92.5%, 100% in compare with PCR. Conclusion: Overall, the LAMP assay is a rapid and cost-efficient laboratory test in comparison to other methods including PCR and culture. Therefore, the LAMP method can be applied in identification of M. pneumoniae isolates in respiratory specimens.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2187
Author(s):  
Paulina Rajko-Nenow ◽  
Emma L. A. Howson ◽  
Duncan Clark ◽  
Natasha Hilton ◽  
Aruna Ambagala ◽  
...  

Epizootic haemorragic disease (EHD) is an important disease of white-tailed deer and can cause a bluetongue-like illness in cattle. A definitive diagnosis of EHD relies on molecular assays such as real-time RT-qPCR or conventional PCR. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a cost-effective, specific, and sensitive technique that provides an alternative to RT-qPCR. We designed two sets of specific primers targeting segment-9 of the EHD virus genome to enable the detection of western and eastern topotypes, and evaluated their performance in singleplex and multiplex formats using cell culture isolates (n = 43), field specimens (n = 20), and a proficiency panel (n = 10). The limit of detection of the eastern and western RT-LAMP assays was estimated as ~24.36 CT and as ~29.37 CT in relation to real-time RT-qPCR, respectively, indicating a greater sensitivity of the western topotype singleplex RT-LAMP. The sensitivity of the western topotype RT-LAMP assay, relative to the RT-qPCR assay, was 72.2%, indicating that it could be theoretically used to detect viraemic cervines and bovines. For the first time, an RT-LAMP assay was developed for the rapid detection of the EHD virus that could be used as either a field test or high throughput screening tool in established laboratories to control the spread of EHD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


2011 ◽  
Vol 47 (No. 4) ◽  
pp. 140-148 ◽  
Author(s):  
N. Rostamkhani ◽  
A. Haghnazari ◽  
M. Tohidfar ◽  
A. Moradi

In an attempt to speed up the process of screening of transgenic cotton (G. hirsutum L.) plants, a visual and rapid loop-mediated isothermal amplification (LAMP) assay was adopted. Genomic DNA was extracted from fresh leaf tissues of T<sub>2</sub> transgenic cotton containing chitinase (chi) and cry1A(b) genes. Detection of genes of interest was performed by polymerase chain reaction (PCR), LAMP and real-time PCR methods. In LAMP assay the amplification was performed after 30 min at 65&deg;C when loop primers were involved in the reaction. The involvement of loop primers decreased the time needed for amplification. By testing serial tenfold dilutions (10<sup>&ndash;1</sup> to 10<sup>&ndash;8</sup>) of the genes of interest, the detection sensitivity of LAMP was found to be 100-fold higher than that of PCR. The rapid DNA extraction method and LAMP assay can be performed within 30 min and the derived LAMP products can be directly observed as visually detectable based on turbidity in the reaction tube. The accuracy of LAMP method in the screening of transgenes was confirmed by PCR and real-time PCR. The developed method was efficient, rapid and sensitive in the screening of cotton transgenic plants. This method can be applied to any other crops.


Sign in / Sign up

Export Citation Format

Share Document