Development of colorimetric and real time loop-mediated isothermal amplification (cr-LAMP) assay for rapid detection of Wheat dwarf virus (WDV)

2021 ◽  
pp. 105786
Author(s):  
Ali Çelik ◽  
Ali Ferhan Morca
Plant Disease ◽  
2021 ◽  
Author(s):  
Xingan Hao ◽  
Licheng Wang ◽  
Xudong Zhang ◽  
Qinrong Zhong ◽  
Jamal U Ddin Hajano ◽  
...  

Wheat dwarf virus (WDV, genus Mastrevirus, family Geminiviridae) is an economically important and widespread pathogen of cereal crops. It causes huge yield loss in wheat due to the unavailability of resistant varieties and rapid transmission by the vector leafhopper, Psammotettix alienus (Dahlb). To monitor and forecast this viral disease, an early diagnosis method is required for WDV detection in both infected plants and the virus vectors. In this study, we developed a real-time loop-mediated isothermal amplification (LAMP) assay for WDV detection. The positive sample could be detected within 28-32 min by following a simple and cost-effective procedure. The real-time LAMP assay showed a sensitivity of 2.7×105-6 copies/µL for detection and a high specificity for WDV amplification, with a similar accuracy to qPCR. Furthermore, a tube-closed dye method facilitates the inspection of the LAMP reaction and avoids cross contamination in the detection of the virus. This valuable detection assay could serve as an important tool for diagnosis and forecasting wheat dwarf disease intensity in the field.


2020 ◽  
Vol 47 (10) ◽  
pp. 8325-8329 ◽  
Author(s):  
Katarzyna Trzmiel ◽  
Beata Hasiów-Jaroszewska

Abstract Wheat dwarf virus (WDV) is considered as one of the most common viruses on cereal crops. Recently, severe outbreaks of WDV have been observed especially on winter wheat in southwestern part of Poland. Moreover, the presence of genetically different WDV-barley-specific and WDV-wheat-specific forms (WDV-B and WDV-W, respectively) was confirmed. In this study, a loop-mediated isothermal amplification assay (LAMP) was developed for the first time for efficient and rapid detection of WDV-B and WDV-W in infected plants. The reaction was performed using a set of three primer pairs: WDVF3/WDVB3, WDVFIB/WDVBIP and WDVLoopF/WDVLoopB specific for coat protein coding sequence. The amplified products were analyzed by direct staining of DNA, gel electrophoresis and real-time monitoring of the amplification curves. The sensitivity of optimized reaction was tenfold higher in comparison with conventional PCR. LAMP assay developed here is a useful and practical method for the rapid detection of different WDV isolates and can be implemented by phytosanitary services.


2005 ◽  
Vol 54 (11) ◽  
pp. 1037-1041 ◽  
Author(s):  
Ryoichi Saito ◽  
Yoshiki Misawa ◽  
Kyoji Moriya ◽  
Kazuhiko Koike ◽  
Kimiko Ubukata ◽  
...  

A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Mycoplasma pneumoniae was developed and evaluated. The assay specifically amplified only M. pneumoniae sequences, and no cross-reactivity was observed for other Mycoplasma species or respiratory bacterial species. The detection limit for this assay was found to be 2 × 102 copies, corresponding to 2–20 colour changing units of M. pneumoniae in 1 h, as observed in a real-time turbidimeter and electrophoretic analysis. The accuracy of the LAMP reaction was confirmed by restriction endonuclease analysis as well as direct sequencing of the amplified product. The assay was applied to 95 nasopharyngeal swab samples collected from patients or from healthy individuals, and compared to a real-time PCR assay in-house. A concordance of 100 % was observed between the two assays. The LAMP assay is easy to perform, shows a rapid reaction and is inexpensive. It may therefore be applied in the routine diagnosis of M. pneumoniae infection in the clinical laboratory.


2015 ◽  
Vol 98 (5) ◽  
pp. 1207-1214 ◽  
Author(s):  
Gurinder Jit Randhawa ◽  
Rashmi Chhabra ◽  
Rajesh K Bhoge ◽  
Monika Singh

Abstract Bt cotton events MON531 and MON15985 are authorized for commercial cultivation in more than 18 countries. In India, four Bt cotton events have been commercialized; more than 95% of total area under genetically modified (GM) cotton cultivation comprises events MON531 and MON15985. The present study reports on the development of efficient event-specific visual and real-time loop-mediated isothermal amplification (LAMP) assays for detection and identification of cotton events MON531 and MON15985. Efficiency of LAMP assays was compared with conventional and real-time PCR assays. Real-time LAMP assay was found time-efficient and most sensitive, detecting up to two target copies within 35 min. The developed real-time LAMP assays, when combined with efficient DNA extraction kit/protocol, may facilitate onsite GM detection to check authenticity of Bt cotton seeds.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5993 ◽  
Author(s):  
Shao-Xin Cai ◽  
Fan-De Kong ◽  
Shu-Fei Xu ◽  
Cui-Luan Yao

Background Enterocytozoon hepatopenaei (EHP) is a newly emerged microsporidian parasite that causes retarded shrimp growth in many countries. But there are no effective approaches to control this disease to date. The EHP could be an immune risk factor for increased dissemination of other diseases. Further, EHP infection involves the absence of obvious clinical signs and it is difficult to identify the pathogen through visual examination, increasing the risk of disease dissemination. It is urgent and necessary to develop a specific, rapid and sensitive EHP-infected shrimp diagnostic method to detect this parasite. In the present study, we developed and evaluated a rapid real-time loop-mediated isothermal amplification (real-time LAMP) for detection of EHP. Methods A rapid and efficient real-time LAMP method for the detection of EHP has been developed. Newly emerged EHP pathogens in China were collected and used as the sample, and three sets of specificity and sensitivity primers were designed. Three other aquatic pathogens were used as templates to test the specificity of the real-time LAMP assay. Also, we compared the real-time LAMP with the conventional LAMP by the serial dilutions of EHP DNA and their amplification curves. Application of real-time LAMP was carried out with clinical samples. Results Positive products were amplified only from EHP, but not from other tested species, EHP was detected from the clinical samples, suggesting a high specificity of this method. The final results of this assay were available within less than 45 min, and the initial amplification curve was observed at about 6 min. We found that the amplification with an exponential of sixfold dilutions of EHP DNA demonstrated a specific positive signal by the real-time LAMP, but not for the LAMP amplicons from the visual inspection. The real-time LAMP amplification curves demonstrated a higher slope than the conventional LAMP. Discussion In this study, pathogen virulence impacts have been increased in aquaculture and continuous observation was predominantly focused on EHP. The present study confirmed that the real-time LAMP assay is a promising and convenient method for the rapid identification of EHP in less time and cost. Its application greatly aids in the detection, surveillance, and prevention of EHP.


Sign in / Sign up

Export Citation Format

Share Document