scholarly journals Sensitive and rapid detection of Vero toxin-producing Escherichia coli using loop-mediated isothermal amplification

2007 ◽  
Vol 56 (3) ◽  
pp. 398-406 ◽  
Author(s):  
Yukiko Hara-Kudo ◽  
Jiro Nemoto ◽  
Kayoko Ohtsuka ◽  
Yuko Segawa ◽  
Kosuke Takatori ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244956
Author(s):  
Lena Diaz ◽  
Yong Li ◽  
Daniel M. Jenkins

Constraints related to sample preparation are some of the primary obstacles to widespread deployment of molecular diagnostics for rapid detection of trace quantities (≤103 CFU/mL) of food-borne pathogens. In this research, we report a sample preparation method using a novel handheld electroflotation system to concentrate and recover dilute quantities (102−103 CFU/mL) of Escherichia coli (E. coli) 25922 in artificially contaminated samples for reliable, rapid detection by loop-mediated isothermal amplification (LAMP). To protect suspended cells from shear stresses at bubble surfaces, a non-ionic surfactant (Pluronic-F68) and flocculant (chitosan oligosaccharide) were used to aggregate cells and reduce their surface hydrophobicity. Effective conditions for recovery were determined through multifactorial experiments including various concentrations of Pluronic-F68 (0.001, 0.01, 0.1, 1 g L-1), chitosan oligosaccharide (0.01, 0.1, 1, 10 g L-1), bacteria (102, 103, 104 CFU/mL E. coli 25922), recovery times (10, 15 and 20 minutes), and degrees of turbulent gas flux (“high” and “low”). The automated electroflotation system was capable of concentrating effectively all of the bacteria from a large sample (380 mL 0.1 M potassium phosphate buffer containing 102 CFU/mL E. coli) into a 1 mL recovered fraction in less than 30 minutes. This enabled detection of bacterial contaminants within 2 hours of collecting the sample, without a specialized laboratory facility or traditional enrichment methods, with at least a 2–3 order of magnitude improvement in detection limit compared to direct assay with LAMP.


Sign in / Sign up

Export Citation Format

Share Document