scholarly journals Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae

Microbiology ◽  
2011 ◽  
Vol 157 (3) ◽  
pp. 879-889 ◽  
Author(s):  
Hugo Hernández ◽  
Cristina Aranda ◽  
Geovani López ◽  
Lina Riego ◽  
Alicia González

The transcriptional activation response relies on a repertoire of transcriptional activators, which decipher regulatory information through their specific binding to cognate sequences, and their capacity to selectively recruit the components that constitute a given transcriptional complex. We have addressed the possibility of achieving novel transcriptional responses by the construction of a new transcriptional regulator – the Hap2-3-5-Gln3 hybrid modulator – harbouring the HAP complex polypeptides that constitute the DNA-binding domain (Hap2-3-5) and the Gln3 activation domain, which usually act in an uncombined fashion. The results presented in this paper show that transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions is achieved through the action of the novel Hap2-3-5-Gln3 transcriptional regulator. We propose that the combination of the Hap DNA-binding and Gln3 activation domains results in a hybrid modulator that elicits a novel transcriptional response not evoked when these modulators act independently.

2020 ◽  
Author(s):  
Paola Pellanda ◽  
Mattia Dalsass ◽  
Marco Filipuzzi ◽  
Alessia Loffreda ◽  
Alessandro Verrecchia ◽  
...  

AbstractEukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity: how these binding modes are integrated to determine select transcriptional outputs remains unresolved. We designed mutants of the MYC transcription factor bearing substitutions in residues that contact either the DNA backbone or specific bases within the consensus binding motif (E-box), and profiled their DNA-binding and gene-regulatory activities in murine cells. Our data reveal that non-specific DNA binding is required for MYC to engage onto active regulatory elements in the genome, preceding sequence recognition; beyond merely stabilizing MYC onto select target loci, sequence-specific binding contributes to its precise positioning and – most unexpectedly – to transcriptional activation per se. In particular, at any given binding intensity, promoters targeted via the cognate DNA motif were more frequently activated by MYC. Hence, seemingly promiscuous chromatin interaction profiles actually encompass diverse DNA-binding modalities, driving defined, sequence-dependent transcriptional responses.


2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


Oncogene ◽  
2014 ◽  
Vol 34 (34) ◽  
pp. 4482-4490 ◽  
Author(s):  
H Choudhry ◽  
A Albukhari ◽  
M Morotti ◽  
S Haider ◽  
D Moralli ◽  
...  

Abstract Activation of cellular transcriptional responses, mediated by hypoxia-inducible factor (HIF), is common in many types of cancer, and generally confers a poor prognosis. Known to induce many hundreds of protein-coding genes, HIF has also recently been shown to be a key regulator of the non-coding transcriptional response. Here, we show that NEAT1 long non-coding RNA (lncRNA) is a direct transcriptional target of HIF in many breast cancer cell lines and in solid tumors. Unlike previously described lncRNAs, NEAT1 is regulated principally by HIF-2 rather than by HIF-1. NEAT1 is a nuclear lncRNA that is an essential structural component of paraspeckles and the hypoxic induction of NEAT1 induces paraspeckle formation in a manner that is dependent upon both NEAT1 and on HIF-2. Paraspeckles are multifunction nuclear structures that sequester transcriptionally active proteins as well as RNA transcripts that have been subjected to adenosine-to-inosine (A-to-I) editing. We show that the nuclear retention of one such transcript, F11R (also known as junctional adhesion molecule 1, JAM1), in hypoxia is dependent upon the hypoxic increase in NEAT1, thereby conferring a novel mechanism of HIF-dependent gene regulation. Induction of NEAT1 in hypoxia also leads to accelerated cellular proliferation, improved clonogenic survival and reduced apoptosis, all of which are hallmarks of increased tumorigenesis. Furthermore, in patients with breast cancer, high tumor NEAT1 expression correlates with poor survival. Taken together, these results indicate a new role for HIF transcriptional pathways in the regulation of nuclear structure and that this contributes to the pro-tumorigenic hypoxia-phenotype in breast cancer.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


1997 ◽  
Vol 17 (11) ◽  
pp. 6410-6418 ◽  
Author(s):  
H Pi ◽  
C T Chien ◽  
S Fields

In the yeast Saccharomyces cerevisiae, Ste12p induces transcription of pheromone-responsive genes by binding to a DNA sequence designated the pheromone response element. We generated a series of hybrid proteins of Ste12p with the DNA-binding and activation domains of the transcriptional activator Gal4p to define a pheromone induction domain of Ste12p sufficient to mediate pheromone-induced transcription by these hybrid proteins. A minimal pheromone induction domain, delineated as residues 301 to 335 of Ste12p, is dependent on the pheromone mitogen-activated protein (MAP) kinase pathway for induction activity. Mutation of the three serine and threonine residues within the minimal pheromone induction domain did not affect transcriptional induction, indicating that the activity of this domain is not directly regulated by MAP kinase phosphorylation. By contrast, mutation of the two tyrosines or their preceding acidic residues led to a high level of transcriptional activity in the absence of pheromone and consequently to the loss of pheromone induction. This constitutively high activity was not affected by mutations in the MAP kinase cascade, suggesting that the function of the pheromone induction domain is normally repressed in the absence of pheromone. By two-hybrid analysis, this minimal domain interacts with two negative regulators, Dig1p and Dig2p (also designated Rst1p and Rst2p), and the interaction is abolished by mutation of the tyrosines. The pheromone induction domain itself has weak and inducible transcriptional activity, and its ability to potentiate transcription depends on the activity of an adjacent activation domain. These results suggest that the pheromone induction domain of Ste12p mediates transcriptional induction via a two-step process: the relief of repression and synergistic transcriptional activation with another activation domain.


1993 ◽  
Vol 13 (3) ◽  
pp. 1666-1674 ◽  
Author(s):  
P A Moore ◽  
S M Ruben ◽  
C A Rosen

The NF-kappa B transcription factor complex is composed of a 50-kDa (p50) and a 65-kDa (p65) subunit. Both subunits bind to similar DNA motifs and elicit transcriptional activation as either homo- or heterodimers. By using chimeric proteins that contain the DNA binding domain of the yeast transcriptional activator GAL4 and subdomains of p65, three distinct transcriptional activation domains were identified. One domain was localized to a region of 42 amino acids containing a potential leucin zipper structure, consistent with earlier reports. Two other domains, both acidic and rich in prolines, were also identified. Of perhaps more significance, the same minimal activation domains that were functional in mammalian cells were also functional in the yeast Saccharomyces cerevisiae. Coexpression of the NF-kappa B inhibitory molecule, I kappa B, reduced the transcriptional activity of p65 significantly, suggesting the ability of I kappa B to function in a similar manner in S. cerevisiae. Surprisingly, while the conserved rel homology domain of p65 demonstrated no transcriptional activity in either mammalian cells or S. cerevisiae, the corresponding domain in p50 was a strong transcriptional activator in S. cerevisiae. The observation that similar domains elicit transcriptional activation in mammalian cells and S. cerevisiae demonstrates strong conservation of the transcriptional machinery required for NF-kappa B function and provides a powerful genetic system to study the transcriptional mechanisms of these proteins.


1995 ◽  
Vol 15 (6) ◽  
pp. 3354-3362 ◽  
Author(s):  
M Green ◽  
T J Schuetz ◽  
E K Sullivan ◽  
R E Kingston

Human heat shock factor 1 (HSF1) stimulates transcription from heat shock protein genes following stress. We have used chimeric proteins containing the GAL4 DNA binding domain to identify the transcriptional activation domains of HSF1 and a separate domain that is capable of regulating activation domain function. This regulatory domain conferred heat shock inducibility to chimeric proteins containing the activation domains. The regulatory domain is located between the transcriptional activation domains and the DNA binding domain of HSF1 and is conserved between mammalian and chicken HSF1 but is not found in HSF2 or HSF3. The regulatory domain was found to be functionally homologous between chicken and human HSF1. This domain does not affect DNA binding by the chimeric proteins and does not contain any of the sequences previously postulated to regulate DNA binding of HSF1. Thus, we suggest that activation of HSF1 by stress in humans is controlled by two regulatory mechanisms that separately confer heat shock-induced DNA binding and transcriptional stimulation.


1996 ◽  
Vol 16 (2) ◽  
pp. 593-602 ◽  
Author(s):  
R Candau ◽  
P A Moore ◽  
L Wang ◽  
N Barlev ◽  
C Y Ying ◽  
...  

Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative adaptor complex. While there is overall sequence similarity between the yeast and human proteins, perhaps more significant is conservation of key sequence features with other known adaptors. We show several functional similarities between the human and yeast adaptors. First, as shown for yADA2 and yGCN5, human ADA2 (hADA2) and human GCN5 (hGCN5) interacted in vivo in a yeast two-hybrid assay. Moreover, hGCN5 interacted with yADA2 in this assay, suggesting that the human proteins form similar complexes. Second, both yADA2 and hADA2 contain cryptic activation domains. Third, hGCN5 and yGCN5 had similar stabilizing effects on yADA2 in vivo. Furthermore, the region of yADA2 that interacted with yGCN5 mapped to the amino terminus of yADA2, which is highly conserved in hADA2. Most striking, is the behavior of the human proteins in human cells. First, GAL4-hADA2 activated transcription in HeLa cells, and second, either hADA2 or hGCN5 augmented GAL4-VP16 activation. These data indicated that the human proteins correspond to functional homologs of the yeast adaptors, suggesting that these cofactors play a key role in transcriptional activation.


2004 ◽  
Vol 186 (4) ◽  
pp. 1200-1204 ◽  
Author(s):  
Todd J. Clark ◽  
Robert S. Phillips ◽  
Becky M. Bundy ◽  
Cory Momany ◽  
Ellen L. Neidle

ABSTRACT Fluorescence emission spectroscopy was used to investigate interactions between two effectors and BenM, a transcriptional regulator of benzoate catabolism. BenM had a higher affinity for cis,cis-muconate than for benzoate as the sole effector. However, the presence of benzoate increased the apparent dissociation constant (reduced the affinity) of the protein for cis,cis-muconate. Similar results were obtained with truncated BenM lacking the DNA-binding domain. High-level transcriptional activation may require that some monomers within a BenM tetramer bind benzoate and others bind cis,cis-muconate.


2007 ◽  
Vol 189 (8) ◽  
pp. 3017-3025 ◽  
Author(s):  
Mihaela Pruteanu ◽  
Saskia B. Neher ◽  
Tania A. Baker

ABSTRACT Proteases play a crucial role in remodeling the bacterial proteome in response to changes in cellular environment. Escherichia coli ZntR, a zinc-responsive transcriptional regulator, was identified by proteomic experiments as a likely ClpXP substrate, suggesting that protein turnover may play a role in regulation of zinc homeostasis. When intracellular zinc levels are high, ZntR activates expression of ZntA, an ATPase essential for zinc export. We find that ZntR is degraded in vivo in a manner dependent on both the ClpXP and Lon proteases. However, ZntR degradation decreases in the presence of high zinc concentrations, the level of ZntR rises, and transcription of the zntA exporter is increased. Mutagenesis experiments reveal that zinc binding does not appear to be solely responsible for the zinc-induced protection from proteolysis. Therefore, we tested whether DNA binding was important in the zinc-induced stabilization of ZntR by mutagenesis of the DNA binding helices. Replacement of a conserved arginine (R19A) in the DNA binding domain both enhances ZntR degradation and abolishes zinc-induced transcriptional activation of zntA. Biochemical and physical analysis of ZntRR19A demonstrates that it is structurally similar to, and binds zinc as well as does, the wild-type protein but is severely defective in binding DNA. Thus, we conclude that two different ligands—zinc and DNA—function together to increase ZntR stability and that ligand-controlled proteolysis of ZntR plays an important role in fine-tuning zinc homeostasis in bacteria.


Sign in / Sign up

Export Citation Format

Share Document