Molecular analysis of mutS expression and mutation in natural isolates of pathogenic Escherichia coli

Microbiology ◽  
2003 ◽  
Vol 149 (5) ◽  
pp. 1323-1331 ◽  
Author(s):  
Baoguang Li ◽  
Ho-Ching T. Tsui ◽  
J. Eugene LeClerc ◽  
Manashi Dey ◽  
Malcolm E. Winkler ◽  
...  

Deficiencies in the MutS protein disrupt methyl-directed mismatch repair (MMR), generating a mutator phenotype typified by high mutation rates and promiscuous recombination. How such deficiencies might arise in the natural environment was determined by analysing pathogenic strains of Escherichia coli. Quantitative Western immunoblotting showed that the amount of MutS in a wild-type strain of the enterohaemorrhagic pathogen E. coli O157 : H7 decreased about 26-fold in stationary-phase cells as compared with the amount present during exponential-phase growth. The depletion of MutS in O157 : H7 is significantly greater than that observed for a laboratory-attenuated E. coli K-12 strain. In the case of stable mutators, mutS defects in strains identified among natural isolates were analysed, including two E. coli O157 : H7 strains, a diarrhoeagenic E. coli O55 : H7 strain, and a uropathogenic strain from the E. coli reference (ECOR) collection. No MutS could be detected in the four strains by Western immunoblot analyses. RNase T2 protection assays showed that the strains were either deficient in mutS transcripts or produced transcripts truncated at the 3′ end. Nucleotide sequence analysis revealed extensive deletions in the mutS region of three strains, ranging from 7·5 to 17·3 kb relative to E. coli K-12 sequence, while the ECOR mutator contained a premature stop codon in addition to other nucleotide changes in the mutS coding sequence. These results provide insights into the status of the mutS gene and its product in pathogenic strains of E. coli.

2001 ◽  
Vol 69 (2) ◽  
pp. 937-948 ◽  
Author(s):  
Lila Lalioui ◽  
Chantal Le Bouguénec

ABSTRACT We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI IAL862, we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenicafa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negativeE. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI IIAL862), which appeared to be similar in size and genetic organization to PAI IAL862 and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 79 ◽  
Author(s):  
J. M. Flórez-Castillo ◽  
P. Rondón-Villareal ◽  
J. L. Ropero-Vega ◽  
S. Y. Mendoza-Espinel ◽  
J. A. Moreno-Amézquita ◽  
...  

The Ib-M6 peptide has antibacterial activity against non-pathogenic Escherichia coli K-12 strain. The first part of this study determines the antibacterial activity of Ib-M6 against fourteen pathogenic strains of E. coli O157:H7. Susceptibility assay showed that Ib-M6 had values of Minimum Inhibitory Concentration (MIC) lower than streptomycin, used as a reference antibiotic. Moreover, to predict the possible interaction between Ib-M6 and outer membrane components of E. coli, we used molecular docking simulations where FhuA protein and its complex with Lipopolysaccharide (LPS–FhuA) were used as targets of the peptide. FhuA/Ib-M6 complexes had energy values between −39.5 and −40.5 Rosetta Energy Units (REU) and only one hydrogen bond. In contrast, complexes between LPS–FhuA and Ib-M6 displayed energy values between −25.6 and −40.6 REU, and the presence of five possible hydrogen bonds. Hence, the antimicrobial activity of Ib-M6 peptide shown in the experimental assays could be caused by its interaction with the outer membrane of E. coli.


1999 ◽  
Vol 181 (22) ◽  
pp. 6929-6936 ◽  
Author(s):  
Jean-Marie Clément ◽  
Caroline Wilde ◽  
Sophie Bachellier ◽  
Patricia Lambert ◽  
Maurice Hofnung

ABSTRACT We demonstrate that IS1397, a putative mobile genetic element discovered in natural isolates of Escherichia coli, is active for transposition into the chromosome of E. coliK-12 and inserts specifically into palindromic units, also called repetitive extragenic palindromes, the basic element of bacterial interspersed mosaic elements (BIMEs), which are found in intergenic regions of enterobacteria closely related to E. coli andSalmonella. We could not detect transposition onto a plasmid carrying BIMEs. This unprecedented specificity of insertion into a well-characterized chromosomal intergenic repeated element and its evolutionary implications are discussed.


2001 ◽  
Vol 8 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Ken-Ichiro Iida ◽  
Yoshimitsu Mizunoe ◽  
Sun Nyunt Wai ◽  
Shin-Ichi Yoshida

ABSTRACT Type 1 fimbriae can be expressed by most Escherichia coli strains and mediate mannose-sensitive (MS) adherence to mammalian epithelial cells. However, the role of type 1 fimbriae in enteric pathogenesis has been unclear. Expression of type 1 fimbriae inE. coli is phase variable and is associated with the inversion of a short DNA element (fim switch). Forty-six strains of diarrheagenic E. coli were examined for the expression of type 1 fimbriae. Only four of these strains were originally type 1 fimbriated. Seventeen strains, originally nonfimbriated, expressed type 1 fimbriae in association with off-to-on inversion of the fim switch, after serial passages in static culture. The switching frequencies of these strains, from fimbriate to nonfimbriate, were greater than that of the laboratory strain E. coli K-12. None of the 16 strains of serovar O157:H7 or O157:H− expressed type 1 fimbriae after serial passages in static culture. The nucleotide sequence analysis of thefim switch region revealed that all of the O157:H7 and O157:H− strains had a 16-bp deletion in the invertible element, and the fim switch was locked in the “off” orientation. The results suggest that expression of type 1 fimbriae may be regulated differently in different E. coli pathogens causing enteric infections.


Microbiology ◽  
2004 ◽  
Vol 150 (5) ◽  
pp. 1495-1505 ◽  
Author(s):  
Neil R. Wyborn ◽  
Angela Clark ◽  
Ruth E. Roberts ◽  
Stuart J. Jamieson ◽  
Svetomir Tzokov ◽  
...  

Haemolysin E (HlyE) is a novel pore-forming toxin first identified in Escherichia coli K-12. Analysis of the 3-D structure of HlyE led to the proposal that a unique hydrophobic β-hairpin structure (the β-tongue, residues 177–203) interacts with the lipid bilayer in target membranes. In seeming contradiction to this, the hlyE sequence from a pathogenic E. coli strain (JM4660) that lacks all other haemolysins has been reported to encode an Arg residue at position 188 that was difficult to reconcile with the proposed role of the β-tongue. Here it is shown that the JM4660 hlyE sequence encodes Gly, not Arg, at position 188 and that substitution of Gly188 by Arg in E. coli K-12 HlyE abolishes activity, emphasizing the importance of the head domain in HlyE function. Nevertheless, 76 other amino acid substitutions were confirmed compared to the HlyE protein of E. coli K-12. The JM4660 HlyE protein was dimeric, suggesting a mechanism for improving toxin solubility, and it lysed red blood cells from many species by forming 36–41 Å diameter pores. However, the haemolytic phenotype of JM4660 was found to be unstable due to defects in HlyE export, indicating that export of active HlyE is not an intrinsic property of the protein but requires additional components. TnphoA mutagenesis of hlyE shows that secretion from the cytoplasm to the periplasm does not require the carboxyl-terminal region of HlyE. Finally, disruption of genes associated with cell envelope function, including tatC, impairs HlyE export, indicating that outer membrane integrity is important for effective HlyE secretion.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 551-562 ◽  
Author(s):  
Sophie Bachellier ◽  
Jean-Marie Clément ◽  
Maurice Hofnung ◽  
Eric Gilson

A significant fraction of Escherichia coli intergenic DNA sequences is composed of two families of repeated bacterial interspersed mosaic elements (BIME-1 and BIME-2). In this study, we determined the sequence organization of six intergenic regions in 51 E. coli and Shigella natural isolates. Each region contains a BIME in E. coli K-12. We found that multiple sequence variations are located within or near these BIMEs in the different bacteria. Events included excisions of a whole BIME-1, expansion/deletion within a BIME-2 and insertions of non-BIME sequences like the boxC repeat or a new IS element, named IS 1397. Remarkably, 14 out of 14 IS 1397 integration sites correspond to a BIME sequence, strongly suggesting that this IS element is specifically associated with BIMEs, and thus inserts only in extragenic regions. Unlike BIMEs, IS 1397 is not detected in all E. coli isolates. Possible relationships between the presence of this IS element and the evolution of BIMEs are discussed.


2004 ◽  
Vol 186 (16) ◽  
pp. 5311-5320 ◽  
Author(s):  
Albrecht Ludwig ◽  
Christine von Rhein ◽  
Susanne Bauer ◽  
Christian Hüttinger ◽  
Werner Goebel

ABSTRACT Cytolysin A (ClyA) of Escherichia coli is a pore-forming hemolytic protein encoded by the clyA (hlyE, sheA) gene that was first identified in E. coli K-12. In this study we examined various clinical E. coli isolates with regard to the presence and integrity of clyA. PCR and DNA sequence analyses demonstrated that 19 of 23 tested Shiga toxin-producing E. coli (STEC) strains, all 7 tested enteroinvasive E. coli (EIEC) strains, 6 of 8 enteroaggregative E. coli (EAEC) strains, and 4 of 7 tested enterotoxigenic E. coli (ETEC) strains possess a complete clyA gene. The remaining STEC, EAEC, and ETEC strains and 9 of the 17 tested enteropathogenic E. coli (EPEC) strains were shown to harbor mutant clyA derivatives containing 1-bp frameshift mutations that cause premature termination of the coding sequence. The other eight EPEC strains and all tested uropathogenic and new-born meningitis-associated E. coli strains (n = 14 and 3, respectively) carried only nonfunctional clyA fragments due to the deletion of two sequences of 493 bp and 204 or 217 bp at the clyA locus. Expression of clyA from clinical E. coli isolates proved to be positively controlled by the transcriptional regulator SlyA. Several tested E. coli strains harboring a functional clyA gene produced basal amounts of ClyA when grown under standard laboratory conditions, but most of them showed a clyA-dependent hemolytic phenotype only when SlyA was overexpressed. The presented data indicate that cytolysin A can play a role only for some of the pathogenic E. coli strains.


2008 ◽  
Vol 76 (12) ◽  
pp. 5466-5477 ◽  
Author(s):  
Eckhard Strauch ◽  
Jens Andre Hammerl ◽  
Antje Konietzny ◽  
Susanne Schneiker-Bekel ◽  
Walter Arnold ◽  
...  

ABSTRACT The production of Shiga toxin (Stx) (verocytotoxin) is a major virulence factor of Escherichia coli O157:H7 strains (Shiga toxin-producing E. coli [STEC] O157). Two types of Shiga toxins, designated Stx1 and Stx2, are produced in STEC O157. Variants of the Stx2 type (Stx2, Stx2c) are associated with high virulences of these strains for humans. A bacteriophage designated 2851 from a human STEC O157 encoding the Stx2c variant was described previously. Nucleotide sequence analysis of the phage 2851 genome revealed 75 predicted coding sequences and indicated a mosaic structure typical for lambdoid phages. Analyses of free phages and K-12 phage 2851 lysogens revealed that upon excision from the bacterial chromosome, the loss of a phage-encoded IS629 element leads to fusion of phage antA and antB genes, with the generation of a recombined antAB gene encoding a strong antirepressor. In wild-type E. coli O157 as well as in K-12 strains, phage 2851 was found to be integrated in the sbcB locus. Additionally, phage 2851 carries an open reading frame which encodes an OspB-like type III effector similar to that found in Shigella spp. Investigation of 39 stx 2c E. coli O157 strains revealed that all except 1 were positive for most phage 2851-specific genes and possessed a prophage with the same border sequences integrated into the sbcB locus. Phage 2851-specific sequences were absent from most stx 2c-negative E. coli O157 strains, and we suggest that phage 2851-like phages contributed significantly to the dissemination of the Stx2c variant toxin within this group of E. coli.


2020 ◽  
Vol 21 (8) ◽  
pp. 772-776
Author(s):  
Xiao-Pei Peng ◽  
Wei Ding ◽  
Jian-Min Ma ◽  
Jie Zhang ◽  
Jian Sun ◽  
...  

Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.


Sign in / Sign up

Export Citation Format

Share Document