A new insertion sequence, IS14999, from Corynebacterium glutamicum

Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 501-508 ◽  
Author(s):  
Yota Tsuge ◽  
Kana Ninomiya ◽  
Nobuaki Suzuki ◽  
Masayuki Inui ◽  
Hideaki Yukawa

A new insertion sequence from Corynebacterium glutamicum ATCC 14999 was isolated and characterized. This IS element, designated IS14999, comprised a 1149 bp nucleotide sequence with 22 bp imperfect terminal inverted repeats. IS14999 carries a single open reading frame of 345 amino acids encoding a putative transposase that appears to have partial homology to IS642, an IS630/Tc1 superfamily element, at the C-terminal region in the amino acid sequence. This indicated that IS14999 belonged to the IS630/Tc1 superfamily, which was first identified in C. glutamicum. IS14999 has a unique distance of 38 amino acid residues between the second and third amino acids in the DDE motif, which is well known as the catalytic centre of transposase. This suggested that IS14999 constituted a new subfamily of the IS630/Tc1 superfamily. A phylogenetic tree constructed on the basis of amino acid sequences of transposases revealed that this new transposable element was more similar to eukaryotic Tc1/mariner family elements than to prokaryotic IS630 family elements. Added to the fact that IS14999 was present in only a few C. glutamicum strains, this implies that IS14999 was probably acquired by a recent lateral transfer event from eukaryotic cells. Analysis of the insertion site in C. glutamicum R revealed that IS14999 appeared to transpose at random and always caused a target duplication of a 5′-TA-3′ dinucleotide upon insertion, like the other IS630/Tc1 family elements. These findings indicated that IS14999 could be a powerful tool for genetic manipulation of corynebacteria and related species.

1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1998 ◽  
Vol 42 (2) ◽  
pp. 436-439 ◽  
Author(s):  
T. R. Walsh ◽  
W. A. Neville ◽  
M. H. Haran ◽  
D. Tolson ◽  
D. J. Payne ◽  
...  

ABSTRACT The Aeromonas veronii bv. sobria metallo-β-lactamase gene, imiS, was cloned. The imiS open reading frame extends for 762 bp and encodes a protein of 254 amino acids with a secreted modified protein of 227 amino acids and a predicted pI of 8.1. To confirm the predicted sequence, purified ImiS was digested and the resulting peptides were identified, yielding an identical sequence for ImiS, with 98% identity to CphA. Both possessed the putative active-site sequence Asn-Tyr-His-Thr-Asp at positions 88 to 92, which is unique to the Aeromonas metallo-β-lactamases.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721 ◽  
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1995 ◽  
Vol 108 (7) ◽  
pp. 2683-2692
Author(s):  
J. Marshall ◽  
D.V. Holberton

Previously described extended proteins from the cytoskeleton of Giardia lamblia (beta-giardin, median body protein) have been found to be segmented coiled coils with regular structural repeat patterns in their amino acid sequences. Screening a lambda ZAPII library derived from Giardia genomic DNA with an antibody directed against a 34 × 10(3) M(r) giardin isoform selected a gene encoding a much larger polypeptide chain (HPSR2), the sequence of which was determined by chromosome walking the open reading frame. The complete gene has been cloned and expressed as a recombinant protein of 183 × 10(3) M(r). The predicted amino acid sequence of the protein has identifiable features suggesting that it might be a motor protein with an amino-terminal hydrolytic domain attached to a long coiled coil stalk. The presumed head domain is 211 residues and contains a P-loop sequence conserved in purine nucleotide-binding proteins. The remaining 1409 amino acids mainly make up a region of heptad repeats such as in myosin or the kinesin stalk, ending in a small (67 amino acids) carboxy-terminal domain. Fourier analysis of the predicted stalk shows the presence of a strong physical repeat created by regular heptad phase changes dividing the coil into segments of 25 residues. This structure most closely resembles the smaller microtubule-associated median body protein which has segments of 24 residues.


2003 ◽  
Vol 185 (16) ◽  
pp. 4891-4900 ◽  
Author(s):  
Sunju Choi ◽  
Shinya Ohta ◽  
Eiichi Ohtsubo

ABSTRACT An Escherichia coli strain, ECOR28, was found to have insertions of an identical sequence (1,279 bp in length) at 10 loci in its genome. This insertion sequence (named IS621) has one large open reading frame encoding a putative protein that is 326 amino acids in length. A computer-aided homology search using the DNA sequence as the query revealed that IS621 was homologous to the piv genes, encoding pilin gene invertase (PIV). A homology search using the amino acid sequence of the putative protein encoded by IS621 as the query revealed that the protein also has partial homology to transposases encoded by the IS110/IS492 family elements, which were known to have partial homology to PIV. This indicates that IS621 belongs to the IS110/IS492 family but is most closely related to the piv genes. In fact, a phylogenetic tree constructed on the basis of amino acid sequences of PIV proteins and transposases revealed that IS621 belongs to the piv gene group, which is distinct from the IS110/IS492 family elements, which form several groups. PIV proteins and transposases encoded by the IS110/IS492 family elements, including IS621, have four acidic amino acid residues, which are conserved at positions in their N-terminal regions. These residues may constitute a tetrad D-E(or D)-D-D motif as the catalytic center. Interestingly, IS621 was inserted at specific sites within repetitive extragenic palindromic (REP) sequences at 10 loci in the ECOR28 genome. IS621 may not recognize the entire REP sequence in transposition, but it recognizes a 15-bp sequence conserved in the REP sequences around the target site. There are several elements belonging to the IS110/IS492 family that also transpose to specific sites in the repeated sequences, as does IS621. IS621 does not have terminal inverted repeats like most of the IS110/IS492 family elements. The terminal sequences of IS621 have homology with the 26-bp inverted repeat sequences of pilin gene inversion sites that are recognized and used for inversion of pilin genes by PIV. This suggests that IS621 initiates transposition through recognition of their terminal regions and cleavage at the ends by a mechanism similar to that used for PIV to promote inversion at the pilin gene inversion sites.


1998 ◽  
Vol 64 (2) ◽  
pp. 763-767 ◽  
Author(s):  
Uriwan Vijaranakul ◽  
Anming Xiong ◽  
Katherine Lockwood ◽  
R. K. Jayaswal

ABSTRACT We recently characterized a transposon-induced NaCl-sensitive mutant of Staphylococcus aureus (U. Vijaranakul, M. J. Nadakavukaren, D. O. Bayles, B. J. Wilkinson, and R. K. Jayaswal, Appl. Environ. Microbiol. 63:1889–1897, 1997). To further characterize this mutant, we determined the nucleotide sequence at the insertion site of the transposon on the S. aureuschromosome. Nucleotide sequencing revealed a 1,326-bp open reading frame (ORF442) encoding a hydrophobic 442-amino-acid polypeptide with a calculated molecular mass of 49,058 Da. The hydrophilicity profile of the gene product revealed the existence of 12 hydrophobic domains predicted to form membrane-associated α-helices. Comparison of the amino acid sequence of ORF442 with amino acid sequences in the GenBank database showed extensive homology with the branched-chain-amino-acid transport genes of gram-positive and gram-negative bacteria. This is the first brnQ gene in staphylococci to be described.


2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 644-651 ◽  
Author(s):  
Kenneth Koo ◽  
W. Dorsey Stuart

The gene product of the mtr locus of Neurospora crassa is required for the transport of neutral aliphatic and aromatic amino acids via the N system. We have previously cloned three cosmids containing Neurospora DNA that complement the mtr-6(r) mutant allele. The cloned DNAs were tightly linked to restriction fragment length polymorphisms that flank the mtr locus. A 2.9-kbp fragment from one cosmid was subcloned and found to complement the mtr-6(r) allele. Here we report the sequence of the fragment that hybridized to a poly(A)+ mRNA transcript of about 2300 nucleotides. We have identified an 845-bp open reading frame (ORF) having a 59-bp intron as the potential mtr ORF. S1 nuclease analysis of the transcript confirmed the transcript size and the presence of the intron. A second open reading frame was found upstream in the same reading frame as the mtr ORF and appears to be present in the mRNA transcript. The mtr ORF is predicted to encode a 261 amino acid polypeptide with a molecular mass of 28 613 Da. The proposed polypeptide exhibits six potential α-helical transmembrane domains with an average length of 23 amino acids, does not have a signal sequence, and contains amino acid sequence homologous to an RNA binding motif.Key words: sequence, membranes, ribonucleoprotein.


1973 ◽  
Vol 131 (3) ◽  
pp. 485-498 ◽  
Author(s):  
R. P. Ambler ◽  
Margaret Wynn

The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5.


2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


Sign in / Sign up

Export Citation Format

Share Document