scholarly journals Exploring the antigenic relatedness of influenza virus haemagglutinins with strain-specific polyclonal antibodies

2014 ◽  
Vol 95 (10) ◽  
pp. 2140-2145
Author(s):  
Blanca García-Barreno ◽  
Teresa Delgado ◽  
Sonia Benito ◽  
Inmaculada Casas ◽  
Francisco Pozo ◽  
...  

Alternative methods to the standard haemagglutination inhibition (HI) and neutralization tests to probe the antigenic properties of the influenza virus haemagglutinin (HA) were developed in this study. Vaccinia virus recombinants expressing reference HAs were used to immunize rabbits from which polyclonal antibodies were obtained. These antibodies were subtype specific but showed limited intra-subtype strain specificity in ELISA. The discriminatory capacity of these antibodies was, however, markedly increased after adsorption to cells infected with heterologous influenza viruses, revealing antigenic differences that were otherwise undistinguishable by standard HI and neutralization tests. Furthermore, the unadsorbed antibodies could be used to select escape mutants of the reference strain, which after sequencing unveiled amino acid changes responsible of the noted antigenic differences. These procedures therefore provide alternative methods for the antigenic characterization of influenza HA and might be useful in studies of HA antigenic evolution.

2018 ◽  
Vol 5 (7) ◽  
pp. 180113
Author(s):  
Emmanuel S. Adabor ◽  
Wilfred Ndifon

Haemagglutination inhibition (HI) assays are typically used for comparing and characterizing influenza viruses. Data obtained from the assays (titres) are used quantitatively to determine antigenic differences between influenza strains. However, the use of these titres has been criticized as they sometimes fail to capture accurate antigenic differences between strains. Our previous analytical work revealed how antigenic and non-antigenic variables contribute to the titres. Building on this previous work, we have developed a Bayesian method for decoupling antigenic and non-antigenic contributions to the titres in this paper. We apply this method to a compendium of HI titres of influenza A (H3N2) viruses curated from 1968 to 2016. Remarkably, the results of this fit indicate that the non-antigenic variable, which is inversely correlated with viral avidity for the red blood cells used in HI assays, oscillates during the course of influenza virus evolution, with a period that corresponds roughly to the timescale on which antigenic variants replace each other. Together, the results suggest that the new Bayesian method is applicable to the analysis of long-term dynamics of both antigenic and non-antigenic properties of influenza virus.


1978 ◽  
Vol 80 (1) ◽  
pp. 13-19 ◽  
Author(s):  
N. Masurel ◽  
J. I. de Bruijne ◽  
H. A. Beuningh ◽  
H. J. A. Schouten

SUMMARYHaemagglutination inhibition (HI) antibodies against the influenza viruses A/Hong Kong/8/68 (H3N2) and B/Nederland/77/66 were determined in 420 paired sera from mothers and newborns (umbilical cord sera), sampled in 1970–1.A higher concentration of antibodies against influenza A virus was found more frequently in neonatal than in maternal sera. By contrast, low titres against influenza B virus were more frequently observed in neonatal than in maternal sera. Maternal age, duration of pregnancy, and birth-weight did not affect the results of the tests.It is suggested that the titre of the newborn against an epidemic influenza virus can be predicted from that of the mother. Furthermore, the maternal titre may be an indication of the susceptibility of the newborn infant to influenza infections.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huihui Kong ◽  
David F. Burke ◽  
Tiago Jose da Silva Lopes ◽  
Kosuke Takada ◽  
Masaki Imai ◽  
...  

ABSTRACT Since the emergence of highly pathogenic avian influenza viruses of the H5 subtype, the major viral antigen, hemagglutinin (HA), has undergone constant evolution, resulting in numerous genetic and antigenic (sub)clades. To explore the consequences of amino acid changes at sites that may affect the antigenicity of H5 viruses, we simultaneously mutated 17 amino acid positions of an H5 HA by using a synthetic gene library that, theoretically, encodes all combinations of the 20 amino acids at the 17 positions. All 251 mutant viruses sequenced possessed ≥13 amino acid substitutions in HA, demonstrating that the targeted sites can accommodate a substantial number of mutations. Selection with ferret sera raised against H5 viruses of different clades resulted in the isolation of 39 genotypes. Further analysis of seven variants demonstrated that they were antigenically different from the parental virus and replicated efficiently in mammalian cells. Our data demonstrate the substantial plasticity of the influenza virus H5 HA protein, which may lead to novel antigenic variants. IMPORTANCE The HA protein of influenza A viruses is the major viral antigen. In this study, we simultaneously introduced mutations at 17 amino acid positions of an H5 HA expected to affect antigenicity. Viruses with ≥13 amino acid changes in HA were viable, and some had altered antigenic properties. H5 HA can therefore accommodate many mutations in regions that affect antigenicity. The substantial plasticity of H5 HA may facilitate the emergence of novel antigenic variants.


2016 ◽  
Vol 113 (12) ◽  
pp. E1701-E1709 ◽  
Author(s):  
Richard A. Neher ◽  
Trevor Bedford ◽  
Rodney S. Daniels ◽  
Colin A. Russell ◽  
Boris I. Shraiman

Human seasonal influenza viruses evolve rapidly, enabling the virus population to evade immunity and reinfect previously infected individuals. Antigenic properties are largely determined by the surface glycoprotein hemagglutinin (HA), and amino acid substitutions at exposed epitope sites in HA mediate loss of recognition by antibodies. Here, we show that antigenic differences measured through serological assay data are well described by a sum of antigenic changes along the path connecting viruses in a phylogenetic tree. This mapping onto the tree allows prediction of antigenicity from HA sequence data alone. The mapping can further be used to make predictions about the makeup of the future A(H3N2) seasonal influenza virus population, and we compare predictions between models with serological and sequence data. To make timely model output readily available, we developed a web browser-based application that visualizes antigenic data on a continuously updated phylogeny.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 133 ◽  
Author(s):  
Magen E. Francis ◽  
Mara McNeil ◽  
Nicholas J. Dawe ◽  
Mary K. Foley ◽  
Morgan L. King ◽  
...  

Influenza virus imprinting is now understood to significantly influence the immune responses and clinical outcome of influenza virus infections that occur later in life. Due to the yearly cycling of influenza viruses, humans are imprinted with the circulating virus of their birth year and subsequently build a complex influenza virus immune history. Despite this knowledge, little is known about how the imprinting strain influences vaccine responses. To investigate the immune responses of the imprinted host to split-virion vaccination, we imprinted ferrets with a sublethal dose of the historical seasonal H1N1 strain A/USSR/90/1977. After a +60-day recovery period to build immune memory, ferrets were immunized and then challenged on Day 123. Antibody specificity and recall were investigated throughout the time course. At challenge, the imprinted vaccinated ferrets did not experience significant disease, while naïve-vaccinated ferrets had significant weight loss. Haemagglutination inhibition assays showed that imprinted ferrets had a more robust antibody response post vaccination and increased virus neutralization activity. Imprinted-vaccinated animals had increased virus-specific IgG antibodies compared to the other experimental groups, suggesting B-cell maturity and plasticity at vaccination. These results should be considered when designing the next generation of influenza vaccines.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Frank Y. K. Wong ◽  
Celeste Donato ◽  
Yi-Mo Deng ◽  
Don Teng ◽  
Naomi Komadina ◽  
...  

ABSTRACTGlobal swine populations infected with influenza A viruses pose a persistent pandemic risk. With the exception of a few countries, our understanding of the genetic diversity of swine influenza viruses is limited, hampering control measures and pandemic risk assessment. Here we report the genomic characteristics and evolutionary history of influenza A viruses isolated in Australia from 2012 to 2016 from two geographically isolated swine populations in the states of Queensland and Western Australia. Phylogenetic analysis with an expansive human and swine influenza virus data set comprising >40,000 sequences sampled globally revealed evidence of the pervasive introduction and long-term establishment of gene segments derived from several human influenza viruses of past seasons, including the H1N1/1977, H1N1/1995, H3N2/1968, and H3N2/2003, and the H1N1 2009 pandemic (H1N1pdm09) influenza A viruses, and a genotype that contained gene segments derived from the past three pandemics (1968, reemerged 1977, and 2009). Of the six human-derived gene lineages, only one, comprising two viruses isolated in Queensland during 2012, was closely related to swine viruses detected from other regions, indicating a previously undetected circulation of Australian swine lineages for approximately 3 to 44 years. Although the date of introduction of these lineages into Australian swine populations could not be accurately ascertained, we found evidence of sustained transmission of two lineages in swine from 2012 to 2016. The continued detection of human-origin influenza virus lineages in swine over several decades with little or unpredictable antigenic drift indicates that isolated swine populations can act as antigenic archives of human influenza viruses, raising the risk of reemergence in humans when sufficient susceptible populations arise.IMPORTANCEWe describe the evolutionary origins and antigenic properties of influenza A viruses isolated from two separate Australian swine populations from 2012 to 2016, showing that these viruses are distinct from each other and from those isolated from swine globally. Whole-genome sequencing of virus isolates revealed a high genotypic diversity that had been generated exclusively through the introduction and establishment of human influenza viruses that circulated in past seasons. We detected six reassortants with gene segments derived from human H1N1/H1N1pdm09 and various human H3N2 viruses that circulated during various periods since 1968. We also found that these swine viruses were not related to swine viruses collected elsewhere, indicating independent circulation. The detection of unique lineages and genotypes in Australia suggests that isolated swine populations that are sufficiently large can sustain influenza virus for extensive periods; we show direct evidence of a sustained transmission for at least 4 years between 2012 and 2016.


2017 ◽  
Vol 15 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Bishu Prasad Upadhyay ◽  
Prakash Ghimire ◽  
Masato Tashiro ◽  
Mogha Raj Banjara

Background: Influenza is one of the public health burdens in Nepal and its epidemiology is not clearly understood. The objective of this study was to explore the molecular epidemiology and the antigenic characteristics of the circulating influenza viruses in Nepal.Methods: A total of 1495 throat swab specimens were collected from January to December, 2014. Real time PCR assay was used for identification of influenza virus types and subtypes. Ten percent of the positive specimens were randomly selected and inoculated onto Madin-Darby Canine Kidney Epithelial cells (MDCK) for influenza virus isolation. All viruses were characterized by the hemagglutination inhibition (HI) assay.Results: Influenza viruses were detected in 421/1495 (28.2%) specimens. Among positive cases, influenza A virus was detected in 301/421 (71.5%); of which 120 (39.9%) were influenza A/H1N1 pdm09 and 181 (60.1%) were influenza A/H3 subtype. Influenza B viruses were detected in 119/421 (28.3%) specimens. Influenza A/H1N1 pdm09, A/H3 and B viruses isolated in Nepal were antigenically similar to the vaccine strain influenza A/California/07/2009(H1N1pdm09), A/Texas/50/2012(H3N2), A/New York/39/2012(H3N2) and B/Massachusetts/2/2012, respectively.Conclusions: Influenza viruses were reported year-round in different geographical regions of Nepal which was similar to other tropical countries. The circulating influenza virus type and subtypes of Nepal were similar to vaccine candidate virus which could be prevented by currently used influenza vaccine.


2014 ◽  
Vol 2 (3) ◽  
pp. 224-228
Author(s):  
Jennifer Tram

Every year the FDA issues a recommendation for the composition of the year’s common influenza vaccine for influenzas A and B.  The FDA can consistently predict the dominance of a particular strand of influenza virus by taking into account previous years’ antigenic characterization percentages. However, the sudden disappearance of dominant antigens and the sudden emergence of drift variants can disrupt this pattern, which questions the effectiveness of that year’s vaccine. Basic Local Alignment Search Tool was used to compare the protein sequences for hemagglutinin and neuraminidase between the strands in the vaccine and the dominant viral strands. This study examined the effectiveness of vaccines from 2000 to 2012, focusing on the transitions between the B/Yamagata and B/Victoria lineages and A/New Caledonia and A/California lineages (H1N1). Between the years 2005 and 2006, dominance of the B/Yamagata lineage, represented by B/Shanghai/361/2002, disappeared almost entirely. For the 2005-2006 flu season, the CDC recommended a B/Shanghai/361/2002 vaccine which expressed a 98% identity to the dominant influenza B hemagglutinin sequence and a 97% identity to the dominant neuraminidase sequence. From 2007 to 2008, the A/New Caledonia virus declined to 34% of cases while the A/Solomon Islands/3/2006 virus increased to 66%. The A/New Caledonia/20/99 vaccine effectively expressed a 97% identity to the hemagglutinin sequence of A/Solomon Islands/3/2006 strand and a 98% identity to the neuraminidase sequence. This study demonstrates that from 2000 to 2012, despite drift variants in influenza viruses, the CDC-recommended vaccine effectively matches the hemagglutinin and neuraminidase protein sequences of the dominant viruses.DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10952 Int J Appl Sci Biotechnol, Vol. 2(3): 224-228  


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Hailiang Sun ◽  
Jialiang Yang ◽  
Tong Zhang ◽  
Li-Ping Long ◽  
Kun Jia ◽  
...  

ABSTRACTThe efficacy of current influenza vaccines requires a close antigenic match between circulating and vaccine strains. As such, timely identification of emerging influenza virus antigenic variants is central to the success of influenza vaccination programs. Empirical methods to determine influenza virus antigenic properties are time-consuming and mid-throughput and require live viruses. Here, we present a novel, experimentally validated, computational method for determining influenza virus antigenicity on the basis of hemagglutinin (HA) sequence. This method integrates a bootstrapped ridge regression with antigenic mapping to quantify antigenic distances by using influenza HA1 sequences. Our method was applied to H3N2 seasonal influenza viruses and identified the 13 previously recognized H3N2 antigenic clusters and the antigenic drift event of 2009 that led to a change of the H3N2 vaccine strain.IMPORTANCEThis report supplies a novel method for quantifying antigenic distance and identifying antigenic variants using sequences alone. This method will be useful in influenza vaccine strain selection by significantly reducing the human labor efforts for serological characterization and will increase the likelihood of correct influenza vaccine candidate selection.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
I. Shkoda ◽  
E. Lapin ◽  
E. Rosenbluth ◽  
S. Perk ◽  
Z. Geva ◽  
...  

An avian influenza virus (AIV), A/turkey/Israel/09 subtype H6N1, was isolated from turkey poults exhibiting typical pathology associated with AIV infection. The virus was characterized by RT-PCR using AIV subtype-specific primers and by the haemagglutination inhibition test using AIV subtype-specific antisera. The virus has an intravenous pathogenicity index of 0 and possessed a nucleotide sequence at the cleavage site of the hemagglutinin gene, PQIETR*GLF, associated with avian influenza viruses of low pathogenicity. Unlike the two previous H6N2 isolates originating from domestic ducks and mallard, the A/turkey/Israel/09 (H6N1) was isolated from turkeys. The gene sequences of the A/turkey/Israel/09 (H6N1) virus show divergence from the former Israeli H6 isolates.


Sign in / Sign up

Export Citation Format

Share Document