scholarly journals The index influenza A virus subtype H5N1 isolated from a human in 1997 differs in its receptor-binding properties from a virulent avian influenza virus

2004 ◽  
Vol 85 (4) ◽  
pp. 1001-1005 ◽  
Author(s):  
Kiyoko Iwatsuki-Horimoto ◽  
Rie Kanazawa ◽  
Shunji Sugii ◽  
Yoshihiro Kawaoka ◽  
Taisuke Horimoto

To gain insight into the events that occur when avian influenza viruses are transmitted to humans, the receptor-binding properties of the index H5N1 influenza virus isolated from a human in 1997 and the A/turkey/Ontario/7732/66 (H5N9) virus were compared, by using a haemadsorption assay. Cells expressing the haemagglutinin (HA) of the human isolate were adsorbed by both chicken red blood cells (RBCs) and human RBCs; those expressing the avian virus HA were only adsorbed by chicken RBCs. These results indicate that human and avian influenza virus H5 HAs differ in their recognition of sialyloligosaccharides on the RBCs of different animal species. Mutational analyses indicated that differences in both the oligosaccharide chains and in the amino acid sequences around the HA receptor-binding site were responsible for this difference in receptor binding. These data further support the concept that alteration in receptor recognition is important for replication of avian viruses in humans.

2019 ◽  
Author(s):  
Xiaorong Guo ◽  
Dong Yang ◽  
Ruchun Liu ◽  
Yaman Li ◽  
Qingqing Hu ◽  
...  

Abstract Background: Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. This study aimed to analyze the efficiency of two surveillance systems in detecting the emerging avian influenza viruses. Methods: A modified influenza surveillance system (ISS) and a new built pneumonia surveillance system (PSS) have been used to monitor the viruses in Changsha City, China. The ISS is based on monitoring outpatients in two sentinel hospitals to detect mild influenza and avian influenza cases, and PSS is based on monitoring inpatients in all 49 hospitals to detect severe and death influenza cases. Results: During the study period, 3551917 outpatients were monitored by the ISS system, among which 126076 were influenza-like illness (ILI) cases, with the ILI% of 3.55%. Totally, 14913 throat swabs were collected by the ISS system, among which 2016 were tested positive of influenza or avian influenza virus. Among the positive results, 621 were H3N2, 135 were seasonal H1N1, 610 were influenza A/H1N1 (pandemic in 2009), 106 were untyped influenza A, 540 were B, 1 was H5N6, 1 was H7N9, and 2 were H9N2 virus. 5491560 inpatient people were monitored by the PSS system, among which 6.61% (362743/5491560) were pneumonia cases. 10.55% (38260/362743) of reported pneumonia was severe or death cases. 3401 throat swab or lower respiratory tract samples were collected, among which 2094 were tested positive of influenza or avian influenza virus. Among the positive results, 78 were H3N2, 17 were seasonal H1N1, 1871 were influenza A/H1N1, 103 were untyped influenza A, 16 were B, 1 was H5N6, and 8 were H7N9 virus. Of 15 avian influenza cases reported from January, 2005 to September, 2016, 26.7% (4/15) were mild cases detected by the ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. Conclusion: The two systems seem to be of high efficiency in detecting the emerging avian influenza viruses but need to be verified in other cities or countries.


2009 ◽  
Vol 419 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Wenxin Luo ◽  
Yingwei Chen ◽  
Mingqiao Wang ◽  
Yixin Chen ◽  
Zhenhua Zheng ◽  
...  

A panel of 52 murine monoclonal antibodies was found to recognize antigenic determinants that had been conserved among all major genetic subgroups of the H5N1 avian influenza virus prevalent since 1997. We screened a phage display library for peptides recognized by one such antibody (8H5). We analysed the specificity of 8H5 for reactive peptides presented as fusion proteins of HBc (hepatitis B core protein) and HEV (hepatitis E virus) structural protein, p239. This was then related to the specificity of the native HA (haemagglutinin) molecule by virtue of the capacity of fusion proteins to compete for 8H5 binding with different strains of H5N1 virus and the reactivity of antisera generated against fusion proteins to bind native HA molecules, and to inhibit haemagglutination and arrest infection by the virus. Nine reactive peptides of different amino acid sequences were identified, six of which were also reactive with the antibody in association with HBc and four were in association with p239. Binding occurred with the dimeric form of the four p239-fusion proteins and one of the HBc-fusion proteins, but not with the monomeric form. The HBc-fusion proteins blocked 8H5 binding with four strains of H5N1 influenza virus. Mouse antisera generated against fusion proteins bound to HA molecules, but did not inhibit haemagglutination or arrest H5N1 infection. Our findings indicate that 8H5 recognizes discontinuous sites presented by secondary and possibly higher structural orders of the peptides in spatially favourable positions for binding with the antibody, and that the peptides partially mimic the native 8H5 epitopes on the H5N1 virus.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Bartram L. Smith ◽  
Guifang Chen ◽  
Claus O. Wilke ◽  
Robert M. Krug

ABSTRACTInfluenza A viruses cause an annual contagious respiratory disease in humans and are responsible for periodic high-mortality human pandemics. Pandemic influenza A viruses usually result from the reassortment of gene segments between human and avian influenza viruses. These avian influenza virus gene segments need to adapt to humans. Here we focus on the human adaptation of the synonymous codons of the avian influenza virus PB1 gene of the 1968 H3N2 pandemic virus. We generated recombinant H3N2 viruses differing only in codon usage of PB1 mRNA and demonstrated that codon usage of the PB1 mRNA of recent H3N2 virus isolates enhances replication in interferon (IFN)-treated human cells without affecting replication in untreated cells, thereby partially alleviating the interferon-induced antiviral state. High-throughput sequencing of tRNA pools explains the reduced inhibition of replication by interferon: the levels of some tRNAs differ between interferon-treated and untreated human cells, and evolution of the codon usage of H3N2 PB1 mRNA is skewed toward interferon-altered human tRNA pools. Consequently, the avian influenza virus-derived PB1 mRNAs of modern H3N2 viruses have acquired codon usages that better reflect tRNA availabilities in IFN-treated cells. Our results indicate that the change in tRNA availabilities resulting from interferon treatment is a previously unknown aspect of the antiviral action of interferon, which has been partially overcome by human-adapted H3N2 viruses.IMPORTANCEPandemic influenza A viruses that cause high human mortality usually result from reassortment of gene segments between human and avian influenza viruses. These avian influenza virus gene segments need to adapt to humans. Here we focus on the human adaptation of the avian influenza virus PB1 gene that was incorporated into the 1968 H3N2 pandemic virus. We demonstrate that the coding sequence of the PB1 mRNA of modern H3N2 viruses enhances replication in human cells in which interferon has activated a potent antiviral state. Reduced interferon inhibition results from evolution of PB1 mRNA codons skewed toward the pools of tRNAs in interferon-treated human cells, which, as shown here, differ significantly from the tRNA pools in untreated human cells. Consequently, avian influenza virus-derived PB1 mRNAs of modern H3N2 viruses have acquired codon usages that better reflect tRNA availabilities in IFN-treated cells and are translated more efficiently.


2017 ◽  
Vol 56 (4) ◽  
pp. 339
Author(s):  
C. S. KYRIAKIS (Κ. ΣΠ. ΚΥΡΙΑΚΗΣ) ◽  
K. Van REETH

The huge epizootics of highly pathogenic avian influenza (subtype H5N1) in Southeastern Asia over the last two years and especially the transmission of avian influenza viruses to humans have alerted the international scientific community. Many support that the threat of a new influenza pandemic appears greater today than ever before. During the 20th century, humanity has faced three pandemics, including the "Spanish flu" of 1918-19, which claimed over 20 to 40 million lives, and two less dramatic pandemics in 1957-58 and 1968-69. Influenza A viruses are single stranded RNA viruses belonging to the family Orthomyxoviridae. Their genome expresses only 10 proteins, most important of which are the two surface glycoproteins: haemagglutinin (HA) and neuraminidase (NA). So far, 16 different types of haemagglutinin (HI to Η16) and 9 of neuraminidase (Nl to N9) have been recognized. Influenza A viruses are grouped into "subtypes", according to the HA and NA surface proteins they bear (for example Η I N I , H5N2). Natural reservoirs of influenza A viruses are the wild aquatic birds (migratory waterfowl), from which all types of HA and NA have been isolated. It is important to mention that migratory waterfowl do not show clinical signs of disease, but shed the virus through their excretions.The host range of flu viruses includes domestic poultry, and mammalian species from aquatic mammals to horses, humans and swine. Because of their segmented single stranded RNA genome, influenza viruses have a very high mutation rate (genetic drift) and the possibility to undergo reassortment. Reassortment may occur when more than one virus co-infect the same cell, exchange genes and as a result, provide a totally new influenza virus (genetic shift). At least two subtypes of influenza A viruses are currendy endemic within the human population (H1N1 and H3N2), causing every year outbreaks of disease with very low mortality, especially in elders. Unlike these endemic viruses, pandemic viruses have a much higher morbidity, affecting people of all ages. Η I N I , H3N2 and H1N2 influenza viruses are currently circulating in the European and American swine population. Some of the swine influenza virus subtypes, namely Η I N I and H3N2, are thus similar to those of humans, but there are still important antigenic differences between them. Only rarely swine influenza viruses may be transmitted or cause disease to humans. Unlike mammalian influenza viruses, influenza viruses of domestic birds are grouped in two "pathotypes": low pathogenic avian influenza (LPAI) viruses, which cause localized infections and remain mild or subclinical, and highly pathogenic avian influenza (HPAI) viruses, which cause severe general infection with mortality up to 100% (fowl plague). The majority of avian influenza viruses are low pathogenic and only some, but not all, viruses of H5 and H7 subtypes are highly pathogenic. Occasionally low pathogenic Η5 or H7 viruses from wild birds transmit to poultry. Such viruses can undergo mutations in poultry as a result of which they may acquire a highly pathogenic phenotype. Until the recent avian influenza epizootics in Asia, the predominant theory for the creation of a pandemic virus supported that the pig was likely to act as an intermediate host for transmission of influenza viruses from birds to humans. The fact that genetic reassortment between human and avian viruses has also been shown to occur in pigs in nature, had led to the hypothesis that the pandemic viruses of 1957 and 1968 may have been generated through the pig. More recent data, however, come to question these theories and hypotheses: (a)the direct transmission of the H5N1 and H7N7 avian influenza viruses from birds to humans in Southeastern Asia and The Netherlands, and (b) the presence of cellular receptors recognized preferentially by the haemagglutinin of avian influenza viruses in the human conjunctiva and ciliated respiratory epithelial cells, which support that avian influenza viruses can be transmitted in toto (without reassortment) to and between humans or that humans can be the mixing vessel themselves. Furthermore, there is no solid scientific evidence to prove that any influenza virus reassortants, that have originated in swine, have posed a risk for humans. There are three criteria (conditions) an influenza virus must fulfill in order to be characterized as a pandemic virus: (a) it must be a new virus against which humans are immunologically naive, (b) it must be able to replicate in humans causing severe disease, and (c) it must be efficiendy transmitted among humans, causing wide outbreaks. So far the H5N1 influenza virus only fulfills the first and second condition, and even though it has been sporadically infecting humans for over two years, it has not yet been able to fully adapt to it's new host. Compared to the human population that may have been exposed to the H5N1 influenza virus in Asia, the number of patients and fatalities due to the H5N1 virus is very small. So far, it appears that swine do not play an important role in the epidemiology of this specific virus. Experimental infections of swine with highly pathogenic H5N1 virus have shown that it does not replicate extensively in pigs. Additionally, extensive serological investigations in the swine population of Viet Nam, indicated that the H5N1 virus merely spread to a very small number (~0.25%) of contact animals within the epizootic regions. Nevertheless, it is critical to continue monitor ring pigs and studying the behavior and spread of influenza viruses in these species.


2001 ◽  
Vol 45 (4) ◽  
pp. 1216-1224 ◽  
Author(s):  
Irina A. Leneva ◽  
Olga Goloubeva ◽  
Robert J. Fenton ◽  
Margaret Tisdale ◽  
Robert G. Webster

ABSTRACT In 1997, an avian H5N1 influenza virus, A/Hong Kong/156/97 (A/HK/156/97), caused six deaths in Hong Kong, and in 1999, an avian H9N2 influenza virus infected two children in Hong Kong. These viruses and a third avian virus [A/Teal/HK/W312/97 (H6N1)] have six highly related genes encoding internal proteins. Additionally, A/Chicken/HK/G9/97 (H9N2) virus has PB1 and PB2 genes that are highly related to those of A/HK/156/97 (H5N1), A/Teal/HK/W312/97 (H6N1), and A/Quail/HK/G1/97 (H9N2) viruses. Because of their similarities with the H5N1 virus, these H6N1 and H9N2 viruses may have the potential for interspecies transmission. We demonstrate that these H6N1 and H9N2 viruses are pathogenic in mice but that their pathogenicities are less than that of A/HK/156/97 (H5N1). Unadapted virus replicated in lungs, but only A/HK/156/97 (H5N1) was found in the brain. After three passages (P3) in mouse lungs, the pathogenicity of the viruses increased, with both A/Teal/HK/W312/97 (H6N1) (P3) and A/Quail/HK/G1/97 (H9N2) (P3) viruses being found in the brain. The neuraminidase inhibitor zanamivir inhibited viral replication in Madin-Darby canine kidney cells in virus yield assays (50% effective concentration, 8.5 to 14.0 μM) and inhibited viral neuraminidase activity (50% inhibitory concentration, 5 to 10 nM). Twice daily intranasal administration of zanamivir (50 and 100 mg/kg of body weight) completely protected infected mice from death. At a dose of 10 mg/kg, zanamivir completely protected mice from infection with H9N2 viruses and increased the mean survival day and the number of survivors infected with H6N1 and H5N1 viruses. Zanamivir, at all doses tested, significantly reduced the virus titers in the lungs and completely blocked the spread of virus to the brain. Thus, zanamivir is efficacious in treating avian influenza viruses that can be transmitted to mammals.


Author(s):  
V. Yu. Marchenko ◽  
N. I. Goncharova ◽  
V. A. Evseenko ◽  
I. M. Susloparov ◽  
E. V. Gavrilova ◽  
...  

Analyzed was modern epidemiological situation on highly pathogenic avian flu in 2018. Prognosis for possible further distribution of viruses in the territory of Russia was made. In 2018, the situation on highly pathogenic avian flu in Russia was challenging. This was due to the spread of the viruses clade 2.3.4.4, which caused multiple outbreaks among wild birds and poultry in European part of Russia. In addition, A/H5N6 avian influenza virus circulation was for the first time detected in the Saratov Region during routine avian influenza virus surveillance. In May, 2018 two different lineages of avian influenza A/H9N2 were isolated during the outbreaks that occurred at several poultry plants in Primorsk Territory and Amur Region of Russia. Subsequently, that virus subtype continued spreading in Russia, which was recorded by detection of the A/H9N2 influenza virus in wild birds in the Khabarovsk and Tomsk Regions of Russia. Thus, it is shown yet again that the territory of Russia plays an  important geographical role in the spread of avian influenza viruses.


2016 ◽  
Vol 72 (9) ◽  
pp. 531-535
Author(s):  
Iwona Markowska-Daniel ◽  
Marcin Mickiewicz ◽  
Lucjan Witkowski ◽  
Jerzy Kita

Influenza is caused by viruses belonging to the Orthomyxoviridae family. Currently three types of influenza virus are known: A (Influenza A virus, IAV), B (IBV) and C (ICV). Despite the fact that all these viruses are derived from a common ancestor they differ from each other by the number of segments, the size and sequence of RNA segments, antigenicity, pathogenicity and the spectrum of natural reservoirs. In 2011, a new influenza virus was isolated in the USA from pigs manifesting influenza-like symptoms. The virus was the most closely related to ICV. It was able to replicate in vitro in different cell cultures and displayed much broader cell tropism than human ICV. Moreover, in contrast to ICV, it was able to replicate at 370C. Electron microscopic studies demonstrated features characteristic of Orthomyxoviruses. Despite morphological and organizational similarities, the biological properties of the new virus, including biochemical activity, differ from that of other influenza viruses. Enzymatic assays revealed that the new virus had negligible neuraminidase but detectable O-acetyloesterase activity. Further studies evidenced that the new virus varied from ICV in receptor binding, despite its sharing a conserved array of functional domains in the viral RNA genome replication and viral entry machinery. Analysis conducted with the use of the model of crystal structure of the hemagglutinin-esterase fusion protein (HE) of the new virus and its receptor demonstrated that this protein was multifunctional. It catalyzes cellular receptor binding, receptor cleavage, as well as membrane fusion. Moreover, divergent receptor-binding sites than HE of ICV have been discovered in the new virus. These amino acid differences may alter the binding specificity and affinity of the HE protein to the receptor that in turn result in the observed differences in cellular tropism between the two viruses. It also possesses an open channel between the 230-helix and 270-loop in the receptor-binding site, which is a unique feature of this virus. This might explain why the new virus has a broad cell tropism. It is possible that the sequence variation in the fusion domain may influence the replication of this virus at a higher temperature when compared to ICV. Next-generation sequencing demonstrated that the genome of the new virus, similarly to ICV, had seven single-stranded negative-sense RNA segments coding 9 viral proteins. Deep RNA sequencing found a M1 protein expression strategy different from that of ICV. Studies aimed at evaluating of the evolutionary relationship of both viruses revealed that the new virus and ICV shared an approximately 69-72% mean pairwise identity in the PB1 gene, which is reported to be the most conserved influenza virus protein. Additionally, differences were detected at 5’ and 3’ends of noncoding regions, which are also highly conserved. They both may be responsible for the lack of in vitro reassortment between ICV of human origin and the new virus. In the study characterizing antigenic properties of the new virus, no cross-reactivity was observed using HI and AGID tests. This indicates the major differences in conserved proteins M1 and NP between both viruses. Summing up, despite the fact that new virus is the most closely related to human ICV, the number of important antigenic and genetic distinctions among them is the basis for suggesting that the International Committee of Virus Taxonomy classify it as a separate genus - D. There is no doubt that the discovery of a new influenza virus genus will have a great impact on influenza research and ecology.


2010 ◽  
Vol 64 (5-6) ◽  
pp. 307-317
Author(s):  
Bosiljka Djuricic ◽  
Ana Samokovlija ◽  
Zivka Ilic ◽  
Dragan Bacic ◽  
Sonja Radojicic ◽  
...  

The disease caused by Influenza viruses has been well known for a very long time. In the recent period there has been noted an occurrence of pandemics caused by Influenza viruses type A with a high rate of mortality. The ongoing pandemic caused by avian influenza virus serotype H9N9 began in Hong Kong in 1992, and another pandemic caused by serotype H5N1 began in China (Hong Kong) in 1999. The world wide spreading of these viruses occurred due to migratory birds. Avian influenza was confirmed in Serbia in 2007. The goal of this study was to examine whether the avian influenza viruses type A circulate in the region of the Obedska bara marsh, which is a famous resort for many birds in Serbia, as well as many birds migrating from Europe to Africa and vice versa. The samples of blood sera of many animal species (123 samples from fowl, 64 samples from donkeys, 40 samples from horses) were tested by serologic reaction of inhibition of haemmaglutination (IHA) for the presence of antibodies to influenza A subtypes H5N1, H5N2, H5N3, H7N1 and H7N2. Also, the samples of blood sera of experimental chicken exposed to wild life in Obedska bara (sentinel species) were tested. Antibodies to subtypes H5N1, H5N2, H5N3, H7N1 and H7N2 were found in chicken from Dec, Boljevci, Petrovcic and Kupinovo villages but no antibodies were found in blood sera from hams from Dobanovci, Jakovo, Becmen and Surcin villages. From 23 samples from ducks antibodies were detected in 3 samples, and from 22 geese blood sera antibodies were found in 4 samples. From a total of 40 horse blood sera tested one was tested positive, and from 64 donkey sera 17 were positive for the presence of antibodies for avian influenza type A. In blood sera of experimental chicken antibodies were found by subtype H5N1 with corrections with H5N2 and H7N1.


2020 ◽  
Vol 20 (1) ◽  
pp. 60-67
Author(s):  
E. S. Sedova ◽  
L. V. Verkhovskaya ◽  
E. A. Artemova ◽  
D. N. Shcherbinin ◽  
A. A. Lysenko ◽  
...  

Influenza is a highly contagious disease that causes annual epidemics and occasional pandemics. Birds are believed to be the source of newly emerging pandemic strains, including highly pathogenic avian influenza viruses of the subtype H7. The aim of the study: to evaluate the ability of the recombinant human adenovirus, serotype 5, which expresses genes of influenza A highly conserved antigens (ion channel M2 and nucleoprotein NP), to provide protection to laboratory mice against infection with a lethal dose of avian influenza virus, subtype H7. To achieve this goal, it was necessary to adapt influenza A virus, subtype H7 for reproduction in the lungs of mice, to characterise it, and to use it for evaluation of the protective properties of the recombinant adenovirus. Materials and methods: avian influenza virus A/Chicken/NJ/294508-12/2004 (H7N2) was adapted for reproduction in the lungs of mice by repeated passages. The adapted strain was sequenced and assessed using hemagglutination test, EID50 and LD50 for laboratory mice. BALB/c mice were immunised once with Ad5-tet-M2NP adenovirus intranasally, and 21 days after the immunisation they were infected with a lethal dose (5 LD50) of influenza virus A/Chicken/NJ/294508-12/2004 (H7N2) in order to assess the protective properties of the recombinant adenovirus. The level of viral shedding from the lungs of the infected mice was evaluated by titration of the lung homogenates in MDCK cell culture on days 3 and 6 after infection. The level of specific antibodies to H7 avian influenza virus was determined by indirect enzyme immunoassay. Results: the use of Ad5-tet-M2NP adenovirus for immunisation of the mice ensured 100% survival of the animals that had disease symptoms (weight loss) after their infection with the lethal dose (5 LD50) of H7 avian influenza virus. The study demonstrated a high post-vaccination level of humoral immune response to H7 avian influenza virus. The virus titer decreased significantly by day 6 in the lungs of mice that had been immunised with Ad5-tet-M2NP compared to the control group. Conclusion: the Ad5-tetM2NP recombinant adenovirus can be used to create a candidate pandemic influenza vaccine that would protect against avian influenza viruses, subtype H7, in particular.


2008 ◽  
Vol 82 (7) ◽  
pp. 3769-3774 ◽  
Author(s):  
Michael Worobey

ABSTRACT Zhang et al. (G. Zhang, D. Shoham, D. Gilichinsky, S. Davydov, J. D. Castello, and S. O. Rogers, J. Virol. 80:12229-12235, 2006) have claimed to have recovered influenza A virus RNA from Siberian lake ice, postulating that ice might represent an important abiotic reservoir for the persistence and reemergence of this medically important pathogen. A rigorous phylogenetic analysis of these influenza A virus hemagglutinin gene sequences, however, indicates that they originated from a laboratory reference strain derived from the earliest human influenza A virus isolate, WS/33. Contrary to Zhang et al.'s assertions that the Siberian “ice viruses” are most closely related either to avian influenza virus or to human influenza virus strains from Asia from the 1960s (Zhang et al., J. Virol. 81:2538 [erratum], 2007), they are clearly contaminants from the WS/33 positive control used in their laboratory. There is thus no credible evidence that environmental ice acts as a biologically relevant reservoir for influenza viruses. Several additional cases with findings that seem at odds with the biology of influenza virus, including modern-looking avian influenza virus RNA sequences from an archival goose specimen collected in 1917 (T. G. Fanning, R. D. Slemons, A. H. Reid, T. A. Janczewski, J. Dean, and J. K. Taubenberger, J. Virol. 76:7860-7862, 2002), can also be explained by laboratory contamination or other experimental errors. Many putative examples of evolutionary stasis in influenza A virus appear to be due to laboratory artifacts.


Sign in / Sign up

Export Citation Format

Share Document