scholarly journals Adenovirus fibre exchange alters cell tropism in vitro but not transgene-specific T CD8+ immune responses in vivo

2004 ◽  
Vol 85 (5) ◽  
pp. 1227-1236 ◽  
Author(s):  
S. Mercier ◽  
S. Verhaagh ◽  
J. Goudsmit ◽  
A. Lemckert ◽  
M. Monteil ◽  
...  

Gene transfer with recombinant adenoviruses (rAds) is a powerful means of inducing an immune response against a transgene product. However, little is known about the mechanisms that underlie the induction of the immune response after intramuscular inoculation of adenovirus and, in particular, the relative role of the different cell types transduced. Several studies have suggested that CD8+ cytotoxic T lymphocyte responses elicited after inoculation of adenoviruses (Ads) are induced both by direct transduction of antigen presenting cells (APCs) and by cross-priming. In the present study, a library of fibre-chimeric rAds was screened in order to identify rAds with distinct capacities to express transgene product in murine cell types naturally found in muscle, i.e. myoblasts, endothelial cells (both representing non-APCs) and dendritic cells (representing APCs). Four selected pseudotypes, differing in their ability to infect muscular cells were used to immunize C57BL/6 mice. The relationship between the capacity to transduce non-APC or APC in vitro and the ability to induce humoral and cellular responses against the β-galactosidase antigen after intramuscular inoculation were studied. Results indicate that CD8+ T cell responses against the β-galactosidase antigen were similar after inoculation of the four viruses, thus revealing no direct relationship with their ability to transduce myoblasts, endothelial cells or dendritic cells in vitro.

2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Patricia Kleinpeter ◽  
Christelle Remy-Ziller ◽  
Eline Winter ◽  
Murielle Gantzer ◽  
Virginie Nourtier ◽  
...  

ABSTRACTIn this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676–8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitroreplication, oncolytic activitiesin vitroandin vivo,and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCEThe vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Toshiaki Kikuchi ◽  
Malcolm A. S. Moore ◽  
Ronald G. Crystal

CD40 ligand (CD40L) is essential for the initiation of antigen-specific T-cell responses. This study is based on the hypothesis that dendritic cells (DCs) genetically modified ex vivo to express CD40L will enhance in vivo presentation of tumor antigen to the cellular immune system with consequent induction of antitumor immunity to suppress tumor growth. To examine this concept, subcutaneous murine tumors were injected with bone marrow-derived DCs that had been modified in vitro with an adenovirus (Ad) vector expressing murine CD40L (AdmCD40L). In B16 (H-2b, melanoma) and CT26 (H-2d, colon cancer) murine models, intratumoral injection of 2 × 106 AdmCD40L-modified DCs (CD40L-DCs) to established (day 8) subcutaneous tumors resulted in sustained tumor regression and survival advantage. This antitumor effect was sustained when the number of CD40L-DCs were reduced 10-fold to 2 × 105. Analysis of spleens from CD40L-DC–treated animals demonstrated that CD40L-DCs injected into the subcutaneous CT26 flank tumors migrated to the spleen, resulting in activation of immune-relevant processes. Consistent with this concept, intratumoral administration of CD40L-DCs elicited tumor-specific cytotoxic T-lymphocyte responses, and the transfer of spleen cells from CD40L-DC–treated mice efficiently protected naive mice against a subsequent tumor challenge. In a distant 2-tumor model of metastatic disease, an untreated B16 tumor in the right flank regressed in parallel with a left B16 tumor treated with direct injection of CD40L-DCs. These results support the concept that genetic modification of DCs with a recombinant CD40L adenovirus vector may be a useful strategy for directly activating DCs for cancer immunotherapy.


2009 ◽  
Vol 24 (1_suppl) ◽  
pp. 31-47 ◽  
Author(s):  
Mingen Xu ◽  
Yongnian Van ◽  
Haixia Liu ◽  
Rui Yag ◽  
Xiaohong Wang

One of the major obstacles in engineering thick and complex tissues while vascularizing tissues in vitro is to maintain cell viability during tissue growth and structural organization. Adipose-derived stromal (ADS) cells were used to establish a multicellular system through a cell-assembly technique. Attempts were made to control ADS cells differentiation into different targeted cell types according to their positions within an orderly 3D structure. Oil red 0 staining confirmed that the ADS cells in the structure differentiated into adipocytes with a spherical shape while immunostaining tests confirmed that the endothelial growth factor induced ADS cells on the walls of channels differentiated into mature endothelial cells and then organized into tubular structures throughout the engineered 3D structure. The endothelin-1 and nitric oxide release rules of the endothelial cells were coincidental with those in vivo. This study provides a new approach to engineer orderly endothelial vessel networks in vitro and has potential applications in adipose-tissue engineering.


2016 ◽  
Vol 213 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Samuele Calabro ◽  
Antonia Gallman ◽  
Uthaman Gowthaman ◽  
Dong Liu ◽  
Pei Chen ◽  
...  

Red blood cell (RBC) transfusion is a life-saving therapeutic tool. However, a major complication in transfusion recipients is the generation of antibodies against non-ABO alloantigens on donor RBCs, potentially resulting in hemolysis and renal failure. Long-lived antibody responses typically require CD4+ T cell help and, in murine transfusion models, alloimmunization requires a spleen. Yet, it is not known how RBC-derived antigens are presented to naive T cells in the spleen. We sought to answer whether splenic dendritic cells (DCs) were essential for T cell priming to RBC alloantigens. Transient deletion of conventional DCs at the time of transfusion or splenic DC preactivation before RBC transfusion abrogated T and B cell responses to allogeneic RBCs, even though transfused RBCs persisted in the circulation for weeks. Although all splenic DCs phagocytosed RBCs and activated RBC-specific CD4+ T cells in vitro, only bridging channel 33D1+ DCs were required for alloimmunization in vivo. In contrast, deletion of XCR1+CD8+ DCs did not alter the immune response to RBCs. Our work suggests that blocking the function of one DC subset during a narrow window of time during RBC transfusion could potentially prevent the detrimental immune response that occurs in patients who require lifelong RBC transfusion support.


2000 ◽  
Vol 100 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Michael J. HICKEY

Constitutively produced nitric oxide released by endothelial cells has been shown to act as an endogenous agent which inhibits the rolling and adhesion of leucocytes in the microcirculation. However, during various types of inflammation, expression of the inducible form of nitric oxide synthase (iNOS) can dramatically increase the amount of nitric oxide present in tissues. Furthermore, as iNOS can be expressed by a wide variety of cell types, the distribution of nitric oxide is likely to be altered relative to that in unstimulated tissue. Under these conditions, it is less well understood whether iNOS-derived nitric oxide retains the anti-adhesive capabilities of constitutively produced nitric oxide. This review summarizes work done to examine this issue. Three main approaches have been used. In vitro studies have examined the role of iNOS in adhesive interactions between stimulated endothelial cells and leucocytes, providing evidence of an anti-adhesive effect of iNOS. In addition, the role of iNOS has been examined in vivo in animal models of inflammation using pharmacological iNOS inhibitors. These experiments were extended by the advent of the iNOS-deficient (iNOS-/-) mouse. Intravital microscopy studies of these mice have indicated that, under conditions of low-dose endotoxaemia, iNOS-derived nitric oxide can inhibit leucocyte rolling and adhesion. The potential mechanisms for these effects are discussed. In contrast, several other studies have observed either no effect or an enhancing effect of iNOS on inflammatory leucocyte recruitment. Taken together, these studies suggest that the importance of iNOS in modulating leucocyte recruitment can vary according to the type of inflammatory response.


2006 ◽  
Vol 80 (5) ◽  
pp. 2506-2514 ◽  
Author(s):  
Haixia Zhou ◽  
Stanley Perlman

ABSTRACT Mouse hepatitis virus strain JHM (MHV-JHM) causes acute encephalitis and acute and chronic demyelinating diseases in mice. Dendritic cells (DCs) are key cells in the initiation of innate and adaptive immune responses, and infection of these cells could potentially contribute to a dysregulated immune response; consistent with this, recent results suggest that DCs are readily infected by another strain of mouse hepatitis virus, the A59 strain (MHV-A59). Herein, we show that the JHM strain also productively infected DCs. Moreover, mature DCs were at least 10 times more susceptible than immature DCs to infection with MHV-JHM. DC function was impaired after MHV-JHM infection, resulting in decreased stimulation of CD8 T cells in vitro. Preferential infection of mature DCs was not due to differential expression of the MHV-JHM receptor CEACAM-1a on mature or immature cells or to differences in apoptosis. Although we could not detect infected DCs in vivo, both CD8+ and CD11b+ splenic DCs were susceptible to infection with MHV-JHM directly ex vivo. This preferential infection of mature DCs may inhibit the development of an efficient immune response to the virus.


Author(s):  
LeShana SaintJean ◽  
H.S. Baldwin

The endocardium represents a distinct population of endothelial cells that arises during the initiation of heart development. Endocardial cells can easily be distinguished from most of the other cardiac cell types. However, endocardial and vascular endothelial cells contain a similar genetic profile that limits the ability to study each group independently. Despite these limitations, tremendous progress has been made in identifying the different roles of endocardial cells throughout heart development. Initial studies focused on the origin of endocardial cells and their role in valvulogenesis, trabeculation, and formation of the ventricular and atrial septum. With the advancement of microscopy and the availability of endocardial specific reporter models (in vitro and in vivo) we have obtained more insight into the molecular, structural, and functional complexity of the endocardium. Additional studies have demonstrated how the endocardium is also involved in the development of coronary vessels within the compact myocardium and in heart regeneration.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 542 ◽  
Author(s):  
Fakhri Mahdi ◽  
Alejandro R. Chade ◽  
Gene L. Bidwell

Elastin-like polypeptides (ELP) are versatile protein biopolymers used in drug delivery due to their modular nature, allowing fusion of therapeutics and targeting agents. We previously developed an ELP fusion with vascular endothelial growth factor (VEGF) and demonstrated its therapeutic efficacy in translational swine models of renovascular disease and chronic kidney disease. The goal of the current work was to refine renal targeting and reduce off-target tissue deposition of ELP–VEGF. The ELP–VEGF fusion protein was modified by adding a kidney-targeting peptide (KTP) to the N-terminus. All control proteins (ELP, KTP–ELP, ELP–VEGF, and KTP–ELP–VEGF) were also produced to thoroughly assess the effects of each domain on in vitro cell binding and activity and in vivo pharmacokinetics and biodistribution. KTP–ELP–VEGF was equipotent to ELP–VEGF and free VEGF in vitro in the stimulation of primary glomerular microvascular endothelial cell proliferation, tube formation, and extracellular matrix invasion. The contribution of each region of the KTP–ELP–VEGF protein to the cell binding specificity was assayed in primary human renal endothelial cells, tubular epithelial cells, and podocytes, demonstrating that the VEGF domain induced binding to endothelial cells and the KTP domain increased binding to all renal cell types. The pharmacokinetics and biodistribution of KTP–ELP–VEGF and all control proteins were determined in SKH-1 Elite hairless mice. The addition of KTP to ELP slowed its in vivo clearance and increased its renal deposition. Furthermore, addition of KTP redirected ELP–VEGF, which was found at high levels in the liver, to the kidney. Intrarenal histology showed similar distribution of all proteins, with high levels in blood vessels and tubules. The VEGF-containing proteins also accumulated in punctate foci in the glomeruli. These studies provide a thorough characterization of the effects of a kidney-targeting peptide and an active cytokine on the biodistribution of these novel biologics. Furthermore, they demonstrate that renal specificity of a proven therapeutic can be improved using a targeting peptide.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Rahul Rai ◽  
Asish K Ghosh ◽  
Layton H Smith ◽  
Douglas E Vaughan

Background: Apelinergic signaling is a recently discovered GPCR mediated pathway. Endothelial cells are the main source of endogenous apelin (apln) while apelin receptor (aplnr) is present on multiple cell types. Since the role of endogenous apelinergic pathway within the context of senescence is largely unknown, we ask if levels of apln- aplnr vary with aging. We also investigate the effects of downregulated apln- aplnr on cellular and organismal aging. Approach and Results: To assess variations in endogenous apln- aplnr with aging, we compared their levels in 1 month (young) and 1 year old (old) WT mice. We noticed significant downregulation of apln- aplnr with chronological senescence in multiple tissues. Expression of apelin was also reduced with replicative senescence of endothelial cells. L-NAME administration, a model of stress induced senescence, also repressed aortic and cardiac apln. To address the mechanism involved in downregulation of apln- aplnr, we administered young wild type mice with Ang II. After a week of Ang II, there was significant downregulation of aortic apln and aplnr. Ang II and TGF-β also repressed apln and aplnr in vitro . Next we investigated the effects of downregulated apln on endothelial cells. In response to shRNA mediated apelin knockdown, cells exhibited slower proliferation and upregulated senescence associated markers. We observed similar results when endothelial aplnr was blocked with an antagonist, ML221. In addition, apln and aplnr deficient mice also exhibited features of cardiovascular aging, including ventricular hypertrophy and lower EF. Importantly, aplnr deficient mice at eight months of age were also hypertensive. Conclusion: We provide a systematic assessment of senescence associated variation in levels of apln- aplnr. We demonstrate the role of Ang II- TGF-β axis in downregulating apln- aplnr during chronological and stress induced senescence in vivo and in vitro . We propose a novel model of Ang II- TGF-β induced senescence. Where in, with aging Ang II and TGF-β repress endogenous apln- aplnr. Downregulation of endogenous apln- aplnr axis decreases beneficial “youthful” effects of apelin, resulting in endothelial dysfunction and accelerated organismal aging.


Sign in / Sign up

Export Citation Format

Share Document