scholarly journals Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans

2005 ◽  
Vol 86 (5) ◽  
pp. 1279-1290 ◽  
Author(s):  
Gemma C. Carter ◽  
Mansun Law ◽  
Michael Hollinshead ◽  
Geoffrey L. Smith

Vaccinia virus (VACV) produces two distinct enveloped virions, the intracellular mature virus (IMV) and the extracellular enveloped virus (EEV), but the entry mechanism of neither virion is understood. Here, the binding and entry of IMV particles have been investigated. The cell receptors for IMV are unknown, but it was proposed that IMV can bind to glycosaminoglycans (GAGs) on the cell surface and three IMV surface proteins have been implicated in this. In this study, the effect of soluble GAGs on IMV infectivity was reinvestigated and it was demonstrated that GAGs affected IMV infectivity partially in some cells, but not at all in others. Therefore, binding of IMV to GAGs is cell type-specific and not essential for IMV entry. By using electron microscopy, it is demonstrated that IMV from strains Western Reserve and modified virus Ankara enter cells by fusion with the plasma membrane. After an IMV particle bound to the cell, the IMV membrane fused with the plasma membrane and released the virus core into the cytoplasm. IMV surface antigen became incorporated into the plasma membrane and was not left outside the cell, as claimed in previous studies. Continuity between the IMV membrane and the plasma membrane was confirmed by tilt-series analysis to orientate membranes perpendicularly to the beam of the electron microscope. This analysis shows unequivocally that IMV is surrounded by a single lipid membrane and enters by fusion at the cell surface.

2000 ◽  
Vol 11 (7) ◽  
pp. 2497-2511 ◽  
Author(s):  
Jacomine Krijnse Locker ◽  
Annett Kuehn ◽  
Sibylle Schleich ◽  
Gaby Rutter ◽  
Heinrich Hohenberg ◽  
...  

The simpler of the two infectious forms of vaccinia virus, the intracellular mature virus (IMV) is known to infect cells less efficiently than the extracellular enveloped virus (EEV), which is surrounded by an additional, TGN-derived membrane. We show here that when the IMV binds HeLa cells, it activates a signaling cascade that is regulated by the GTPase rac1 and rhoA, ezrin, and both tyrosine and protein kinase C phosphorylation. These cascades are linked to the formation of actin and ezrin containing protrusions at the plasma membrane that seem to be essential for the entry of IMV cores. The identical cores of the EEV also appear to enter at the cell surface, but surprisingly, without the need for signaling and actin/membrane rearrangements. Thus, in addition to its known role in wrapping the IMV and the formation of intracellular actin comets, the membrane of the EEV seems to have evolved the capacity to enter cells silently, without a need for signaling.


2002 ◽  
Vol 83 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Henriette van Eijl ◽  
Michael Hollinshead ◽  
Gaener Rodger ◽  
Wei-Hong Zhang ◽  
Geoffrey L. Smith

The vaccinia virus (VV) F12L gene encodes a 65 kDa protein that is expressed late during infection and is important for plaque formation, EEV production and virulence. Here we have used a recombinant virus (vF12LHA) in which the F12L protein is tagged at the C terminus with an epitope recognized by a monoclonal antibody to determine the location of F12L in infected cells and whether it associates with virions. Using confocal and electron microscopy we show that the F12L protein is located on intracellular enveloped virus (IEV) particles, but is absent from immature virions (IV), intracellular mature virus (IMV) and cell-associated enveloped virus (CEV). In addition, F12L shows co-localization with endosomal compartments and microtubules. F12L did not co-localize with virions attached to actin tails, providing further evidence that actin tails are associated with CEV but not IEV particles. In vΔF12L-infected cells, virus morphogenesis was arrested after the formation of IEV particles, so that the movement of these virions to the cell surface was inhibited and CEV particles were not found. Previously, virus mutants lacking IEV- or EEV-specific proteins were either unable to make IEV particles (vΔF13L and vΔB5R), or were unable to form actin tails after formation of CEV particles (vΔA36R, vΔA33R, vΔA34R). The F12L deletion mutant therefore defines a new stage in the morphogenic pathway and the F12L protein is implicated as necessary for microtubule-mediated egress of IEV particles to the cell surface.


2003 ◽  
Vol 77 (18) ◽  
pp. 9931-9942 ◽  
Author(s):  
Andrea Meiser ◽  
Carmen Sancho ◽  
Jacomine Krijnse Locker

ABSTRACT In HeLa cells the assembly of modified vaccinia virus Ankara (MVA), an attenuated vaccinia virus (VV) strain, is blocked. No intracellular mature viruses (IMVs) are made and instead, immature viruses accumulate, some of which undergo condensation and are released from the cell. The condensed particles may undergo wrapping by membranes of the trans-Golgi network and fusion with the plasma membrane prior to their release (M. W. Carroll and B. Moss, Virology 238:198-211, 1997). The present study shows by electron microscopy (EM), however, that the dense particles made in HeLa cells are also released by a budding process at the plasma membrane. By labeling the plasma membrane with antibodies to B5R, a membrane protein of the extracellular enveloped virus, we show that budding occurs at sites that concentrate this protein. EM quantitation revealed that the cell surface around a budding profile was as strongly labeled with anti-B5R antibody as were the extracellular particles, whereas the remainder of the plasma membrane was significantly less labeled. To test whether budding was a characteristic of MVA infection, HeLa cells were infected with the replication competent VV strains Western Reserve strain (WR) and International Health Department strain-J (IHD-J) and also prepared for EM. EM analyses, surprisingly, revealed for both virus strains IMVs that evidently budded at the cell surface at sites that were significantly labeled with anti-B5R. EM also indicated that budding of MVA dense particles was more efficient than budding of IMVs from WR- or IHD-J-infected cells. This was confirmed by semipurifying [35S]methionine-labeled dense particles or extracellular enveloped virus (EEVs) from the culture supernatant of MVA- or IHD-J-infected HeLa cells, respectively, showing that threefold more labeled dense particles were secreted than EEVs. Finally, although the released MVA dense particles contain some DNA, they are not infectious, as assessed by plaque assays.


2020 ◽  
Vol 36 (11) ◽  
pp. 3447-3456 ◽  
Author(s):  
Matthew Waas ◽  
Shana T Snarrenberg ◽  
Jack Littrell ◽  
Rachel A Jones Lipinski ◽  
Polly A Hansen ◽  
...  

Abstract Motivation Cell-type-specific surface proteins can be exploited as valuable markers for a range of applications including immunophenotyping live cells, targeted drug delivery and in vivo imaging. Despite their utility and relevance, the unique combination of molecules present at the cell surface are not yet described for most cell types. A significant challenge in analyzing ‘omic’ discovery datasets is the selection of candidate markers that are most applicable for downstream applications. Results Here, we developed GenieScore, a prioritization metric that integrates a consensus-based prediction of cell surface localization with user-input data to rank-order candidate cell-type-specific surface markers. In this report, we demonstrate the utility of GenieScore for analyzing human and rodent data from proteomic and transcriptomic experiments in the areas of cancer, stem cell and islet biology. We also demonstrate that permutations of GenieScore, termed IsoGenieScore and OmniGenieScore, can efficiently prioritize co-expressed and intracellular cell-type-specific markers, respectively. Availability and implementation Calculation of GenieScores and lookup of SPC scores is made freely accessible via the SurfaceGenie web application: www.cellsurfer.net/surfacegenie. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2007 ◽  
Vol 81 (16) ◽  
pp. 8613-8620 ◽  
Author(s):  
Alan C. Townsley ◽  
Bernard Moss

ABSTRACT Entry of vaccinia virus into cells occurs by an endosomal route as well as through the plasma membrane. Evidence for an endosomal pathway was based on findings that treatment at a pH of <6 of mature virions attached to the plasma membrane enhances entry, whereas inhibitors of endosomal acidification reduce entry. Inactivation of infectivity by low-pH treatment of virions prior to membrane attachment is characteristic of many viruses that use the endosomal route. Nevertheless, we show here that the exposure of unattached vaccinia virus virions to low pH at 37°C did not alter their infectivity. Instead, such treatment stably activated virions as indicated by their accelerated entry upon subsequent addition to cells, as measured by reporter gene expression. Moreover, the rate of entry was not further enhanced by a second low-pH treatment following adsorption to the plasma membrane. However, the entry of virions activated prior to adsorption remained sensitive to inhibitors of endosomal acidification, whereas virions treated with low pH after adsorption were resistant. Activation of virions by low pH was closely mimicked by proteinase digestion, suggesting that the two treatments operate through a related mechanism. Although proteinase cleavage of the virion surface proteins D8 and A27 correlated with activation, mutant viruses constructed by individually deleting these genes did not exhibit an activated phenotype. We propose a two-step model of vaccinia virus entry through endosomes, in which activating or unmasking the fusion complex by low pH or by proteinase is rate limiting but does not eliminate a second low-pH step mediating membrane fusion.


1990 ◽  
Vol 10 (6) ◽  
pp. 2606-2618 ◽  
Author(s):  
C M Isacke ◽  
P van der Geer ◽  
T Hunter ◽  
I S Trowbridge

A 180-kilodalton (kDa) protein (p180) was identified among the antigens for a panel of monoclonal antibodies raised against human fibroblast cell surface proteins. Binding studies with 125I-Fab' fragments of an anti-p180 monoclonal antibody demonstrated that 10 to 30% of p180 was located on the plasma membrane and that the remaining 70 to 90% was on intracellular membranes. p180 was rapidly internalized from the cell surface at 37 degrees C, and kinetic analyses indicated that this was a constitutive process followed by the recycling of p180 back to the plasma membrane. Morphological studies demonstrated that on the cell surface p180 was concentrated in coated pits, whereas inside the cell it was found in endosomes as suggested by its colocalization with the transferrin receptor. Immunoblot analysis with a polyclonal antiserum raised against purified human protein showed that p180 has a restricted distribution with expression at high levels in fibroblast cultures and in tissues containing cells of mesodermal origin. A biochemical characterization of p180 showed it to be a transmembrane glycoprotein with an extracellular domain, which consists of approximately 30 kDa of complex oligosaccharides attached to at least 45 kDa of the protein core. The cytoplasmic domain of p180 was found to contain a serine residue(s) that was phosphorylated both in vivo and in vitro by activated protein kinase C. p180 was purified by subjecting solubilized membrane proteins from a human osteosarcoma cell line to immunoaffinity chromatography and gel filtration. The N-terminal sequence information obtained from the purified protein showed no homology to other known proteins. It was concluded that p180 may be a novel recycling receptor which is highly restricted in its expression to fibroblastlike cells.


1995 ◽  
Vol 310 (1) ◽  
pp. 271-278 ◽  
Author(s):  
L Uhlin-Hansen ◽  
M Yanagishita

Rat ovarian granulosa cells were labelled with [35S]sulphate for 0.5-20 h and chased in the presence or absence of 1-2 micrograms/ml of brefeldin A (BFA) for up to 21 h. Heparan [35S]sulphate (HS) proteoglycans from the culture medium, plasma membrane and intracellular fractions were then analysed by gel chromatography. In the absence of BFA, about 85% of the plasma membrane-associated HS proteoglycans were endocytosed and subsequently degraded intracellularly. Recirculation of the HS proteoglycans between the intracellular pool and the cell surface was not observed. Exposing the cells to BFA for less than 1 h did not influence the turnover of the HS proteoglycans, whereas the effect of the drug on the Golgi functions reached a maximum in approx. 10 min. When the cells were treated with BFA for more than 1-2 h, the rate of endocytosis of HS proteoglycans was reduced to about 50% of the control. The delivery of endocytosed HS proteoglycans to lysosomes were not affected by the drug. Cycloheximide also reduced the endocytosis of HS proteoglycans, but not as much as BFA, indicating that the inhibitory effect of BFA can be only partly accounted for by a block of protein transport from the endoplasmic reticulum to the plasma membrane. In contrast with the endocytosis of HS proteoglycans, neither that of 125I-transferrin, known to be mediated by clathrin-coated vesicles, nor that of 125I-ricin, a marker molecule for bulk endocytosis, was affected by BFA. The half-life of 125I-transferrin and 125I-ricin in the plasma membrane was about 10 and 25 min respectively compared with about 5 h for the HS proteoglycans. Altogether, these results indicate that the endocytosis of plasma-membrane-associated HS proteoglycans is mediated by different mechanisms than the endocytosis of most other cell-surface proteins. Further, the mechanisms involved in the endocytosis of HS proteoglycans are sensitive to BFA.


2020 ◽  
Vol 477 (12) ◽  
pp. 2327-2345 ◽  
Author(s):  
Alessandra Casamento ◽  
Emmanuel Boucrot

Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.


1994 ◽  
Vol 107 (7) ◽  
pp. 2005-2020 ◽  
Author(s):  
F. Garcia-del Portillo ◽  
M.G. Pucciarelli ◽  
W.A. Jefferies ◽  
B.B. Finlay

Salmonella interact with eucaryotic membranes to trigger internalization into non-phagocytic cells. In this study we examined the distribution of host plasma membrane proteins during S. typhimurium invasion of epithelial cells. Entry of S. typhimurium into HeLa epithelial cells produced extensive aggregation of cell surface class I MHC heavy chain, beta 2-microglobulin, fibronectin-receptor (alpha 5 beta 1 integrin), and hyaluronate receptor (CD-44). Other cell surface proteins such as transferrin-receptor or Thy-1 were aggregated by S. typhimurium to a much lesser extent. Capping of these plasma membrane proteins was observed in membrane ruffles localized to invading S. typhimurium and in the area surrounding these structures. In contrast, membrane ruffling induced by epidermal growth factor only produced minor aggregations of surface proteins, localized exclusively in the membrane ruffle. This result suggests that extensive redistribution of these proteins requires a signal related to bacterial invasion. This bacteria-induced process was associated with rearrangement of polymerized actin but not microtubules, since preincubation of epithelial cells with cytochalasin D blocked aggregation of these proteins while nocodazole treatment did not. Of the host surface proteins aggregated by S. typhimurium, only class I MHC heavy chain was predominantly present in the bacteria-containing vacuoles. No extensive aggregation of host plasma membrane proteins was detected when HeLa epithelial cells were infected with invasive bacteria that do not induce membrane ruffling, including Yersinia enterocolitica, a bacterium that triggers internalization via binding to beta 1 integrin, and a S. typhimurium invasion mutant that utilizes the Yersinia-internalization route. In contrast to the situation with S. typhimurium, class I MHC heavy chain was not selectively internalized into vacuoles containing these other bacteria. Extensive aggregation of host plasma membrane proteins was also not observed when other S. typhimurium mutants that are defective for invasion were used. The amount of internalized host plasma membrane proteins in the bacteria-containing vacuoles decreased over time with all invasive bacteria examined, indicating that modification of the composition of these vacuoles occurs. Therefore, our data show that S. typhimurium induces selective aggregation and internalization of host plasma membrane proteins, processes associated with the specific invasion strategy used by this bacterium to enter into epithelial cells.


2012 ◽  
Vol 93 (9) ◽  
pp. 1876-1886 ◽  
Author(s):  
Virginie Doceul ◽  
Michael Hollinshead ◽  
Adrien Breiman ◽  
Kathlyn Laval ◽  
Geoffrey L. Smith

Vaccinia virus (VACV) spreads across cell monolayers fourfold faster than predicted from its replication kinetics. Early after infection, infected cells repulse some superinfecting extracellular enveloped virus (EEV) particles by the formation of actin tails from the cell surface, thereby causing accelerated spread to uninfected cells. This strategy requires the expression of two viral proteins, A33 and A36, on the surface of infected cells and upon contact with EEV this complex induces actin polymerization. Here we have studied this phenomenon further and investigated whether A33 and A36 expression in cell lines causes an increase in VACV plaque size, whether these proteins are able to block superinfection by EEV, and which protein(s) on the EEV surface are required to initiate the formation of actin tails from infected cells. Data presented show that VACV plaque size was not increased by expression of A33 and A36, and these proteins did not block entry of the majority of EEV binding to these cells. In contrast, expression of proteins A56 and K2 inhibited entry of both EEV and intracellular mature virus. Lastly, VACV protein B5 was required on EEV to induce the formation of actin tails at the surface of cells expressing A33 and A36, and B5 short consensus repeat 4 is critical for this induction.


Sign in / Sign up

Export Citation Format

Share Document