scholarly journals Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA

2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Carina F. Pereira ◽  
Eliot K. C. Read ◽  
Helen M. Wise ◽  
Maria J. Amorim ◽  
Paul Digard

ABSTRACT Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as previously identified roles in antagonizing the innate immune defenses of the cell and directly upregulating translation of viral mRNAs, it also promotes the nuclear export of the viral late gene mRNAs by acting as an adaptor between the viral mRNAs and the cellular mRNA nuclear export machinery.

2018 ◽  
Author(s):  
Carina F. Pereira ◽  
Helen M. Wise ◽  
Dominic Kurian ◽  
Rute M. Pinto ◽  
Maria J. Amorim ◽  
...  

AbstractObjectiveThe multifunctional NS1 protein of influenza A virus has roles in antagonising cellular innate immune responses and promoting viral gene expression. To better understand the interplay between these functions, we tested the effects of NS1 effector domain mutations known to affect homo-dimerisation or interactions with cellular PI3 kinase or Trim25 on NS1 ability to promote nuclear export of viral mRNAs.ResultsThe NS1 dimerisation mutant W187R retained the functions of binding cellular NXF1 as well as stabilising NXF1 interaction with viral segment 7 mRNAs and promoting their nuclear export. Two PI3K-binding mutants, NS1 Y89F and Y89A still bound NXF1 but no longer promoted NXF1 interactions with segment 7 mRNA or its nuclear export. The Trim25-binding mutant NS1 E96A/E97A bound NXF1 and supported NXF1 interactions with segment 7 mRNA but no longer supported mRNA nuclear export. Analysis of WT and mutant NS1 interaction partners identified hsp70 as specifically binding to NS1 E96A/E97A. Whilst these data suggest the possibility of functional links between NS1’s effects on intracellular signalling and its role in viral mRNA nuclear export, they also indicate potential pleiotropic effects of the NS1 mutations; in the case of E96A/E97A possibly via disrupted protein folding leading to chaperone recruitment.


2003 ◽  
Vol 77 (24) ◽  
pp. 13257-13266 ◽  
Author(s):  
Nicola R. Donelan ◽  
Christopher F. Basler ◽  
Adolfo García-Sastre

ABSTRACT Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-β) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-β production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Liang Zhang ◽  
Juan Wang ◽  
Raquel Muñoz-Moreno ◽  
Min Kim ◽  
Ramanavelan Sakthivel ◽  
...  

ABSTRACTThe NS1 protein of influenza A virus is a multifunctional virulence factor that inhibits cellular processes to facilitate viral gene expression. While NS1 is known to interact with RNA and proteins to execute these functions, the cellular RNAs that physically interact with NS1 have not been systematically identified. Here we reveal a NS1 protein-RNA interactome and show that NS1 primarily binds intronic sequences. Among this subset of pre-mRNAs is the RIG-I pre-mRNA, which encodes the main cytoplasmic antiviral sensor of influenza virus infection. This suggested that NS1 interferes with the antiviral response at a posttranscriptional level by virtue of its RNA binding properties. Indeed, we show that NS1 is necessary in the context of viral infection and sufficient upon transfection to decrease the rate of RIG-I intron removal. This NS1 function requires a functional RNA binding domain and is independent of the NS1 interaction with the cleavage and polyadenylation specificity factor CPSF30. NS1 has been previously shown to abrogate RIG-I-mediated antiviral immunity by inhibiting its protein function. Our data further suggest that NS1 also posttranscriptionally alters RIG-I pre-mRNA processing by binding to the RIG-I pre-mRNA.IMPORTANCEA key virulence factor of influenza A virus is the NS1 protein, which inhibits various cellular processes to facilitate viral gene expression. The NS1 protein is localized in the nucleus and in the cytoplasm during infection. In the nucleus, NS1 has functions related to inhibition of gene expression that involve protein-protein and protein-RNA interactions. While several studies have elucidated the protein interactome of NS1, we still lack a clear and systematic understanding of the NS1-RNA interactome. Here we reveal a nuclear NS1-RNA interactome and show that NS1 primarily binds intronic sequences within a subset of pre-mRNAs, including the RIG-I pre-mRNA that encodes the main cytoplasmic antiviral sensor of influenza virus infection. Our data here further suggest that NS1 is necessary and sufficient to impair intron processing of the RIG-I pre-mRNA. These findings support a posttranscriptional role for NS1 in the inhibition of RIG-I expression.


2007 ◽  
Vol 88 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Yeun-Kyung Shin ◽  
Qiang Liu ◽  
Suresh K. Tikoo ◽  
Lorne A. Babiuk ◽  
Yan Zhou

Influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism is not clear. Here, it is reported that influenza A virus NS1 protein is responsible for PI3K/Akt pathway activation. It was demonstrated that the NS1 protein interacts with the p85 regulatory subunit of PI3K via direct binding to the SH3 and C-terminal SH2 domains of p85. Consensus binding motifs for SH3 and SH2 domains were found in influenza A virus NS1, namely an SH2-binding motif (YXXXM) at aa 89, SH3-binding motif 1 (PXXP) around aa 164 and SH3-binding motif 2 around aa 212. Mutant virus encoding NS1 protein with mutations in the SH-binding motifs failed to interact with SH domains of p85 and did not activate the PI3K/Akt pathway. The mutant virus is attenuated in Madin–Darby canine kidney cells. Our study has established a novel function of NS1: by interacting with p85 via the SH-binding motifs, NS1 can activate the PI3K/Akt pathway.


2012 ◽  
Vol 93 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Nicole C. Robb ◽  
Ervin Fodor

The influenza A virus M1 mRNA is alternatively spliced to produce M2 mRNA, mRNA3, and in some cases, M4 mRNA. Splicing of influenza mRNAs is carried out by the cellular splicing machinery and is thought to be regulated, as both spliced and unspliced mRNAs encode proteins. In this study, we used radioactively labelled primers to investigate the accumulation of spliced and unspliced M segment mRNAs in viral infection and ribonucleoprotein (RNP) reconstitution assays in which only the minimal components required for transcription and replication to occur were expressed. We found that co-expression of the viral NS1 protein in an RNP reconstitution assay altered the accumulation of spliced mRNAs compared with when it was absent, and that this activity was dependent on the RNA-binding ability of NS1. These findings suggest that the NS1 protein plays a role in the regulation of splicing of influenza virus M1 mRNA.


2002 ◽  
Vol 76 (24) ◽  
pp. 12951-12962 ◽  
Author(s):  
Xiuyan Wang ◽  
Christopher F. Basler ◽  
Bryan R. G. Williams ◽  
Robert H. Silverman ◽  
Peter Palese ◽  
...  

ABSTRACT The NS1 protein of influenza A/WSN/33 virus is a 230-amino-acid-long protein which functions as an interferon alpha/beta (IFN-α/β) antagonist by preventing the synthesis of IFN during viral infection. In tissue culture, the IFN inhibitory function of the NS1 protein has been mapped to the RNA binding domain, the first 73 amino acids. Nevertheless, influenza viruses expressing carboxy-terminally truncated NS1 proteins are attenuated in mice. Dimerization of the NS1 protein has previously been shown to be essential for its RNA binding activity. We have explored the ability of heterologous dimerization domains to functionally substitute in vivo for the carboxy-terminal domains of the NS1 protein. Recombinant influenza viruses were generated that expressed truncated NS1 proteins of 126 amino acids, fused to 28 or 24 amino acids derived from the dimerization domains of either the Saccharomyces cerevisiae PUT3 or the Drosophila melanogaster Ncd (DmNcd) proteins. These viruses regained virulence and lethality in mice. Moreover, a recombinant influenza virus expressing only the first 73 amino acids of the NS1 protein was able to replicate in mice lacking three IFN-regulated antiviral enzymes, PKR, RNaseL, and Mx, but not in wild-type (Mx-deficient) mice, suggesting that the attenuation was mainly due to an inability to inhibit the IFN system. Remarkably, a virus with an NS1 truncated at amino acid 73 but fused to the dimerization domain of DmNcd replicated and was also highly pathogenic in wild-type mice. These results suggest that the main biological function of the carboxy-terminal region of the NS1 protein of influenza A virus is the enhancement of its IFN antagonist properties by stabilizing the NS1 dimeric structure.


2019 ◽  
Author(s):  
Brenda M. Calderon ◽  
Shamika Danzy ◽  
Gabrielle K. Delima ◽  
Nathan T. Jacobs ◽  
Ketaki Ganti ◽  
...  

AbstractThe M segment of the 2009 pandemic influenza A virus (IAV) has been implicated in its emergence into human populations. To elucidate the genetic contributions of the M segment to host adaptation, and the underlying mechanisms, we examined a panel of isogenic viruses that carry avian- or human-derived M segments. Avian, but not human, M segments restricted viral growth and transmission in mammalian model systems, and the restricted growth correlated with increased expression of M2 relative to M1. M2 overexpression was associated with intracellular accumulation of autophagosomes, which was alleviated by interference of the viral proton channel activity by amantadine treatment. As M1 and M2 are expressed from the M mRNA through alternative splicing, we separated synonymous and non-synonymous changes that differentiate human and avian M segments and found that dysregulation of gene expression leading to M2 overexpression diminished replication, irrespective of amino acid composition of M1 or M2. Moreover, in spite of efficient replication, virus possessing a human M segment that expressed avian M2 protein at low level did not transmit efficiently. We conclude that (i) determinants of transmission reside in the IAV M2 protein, and that (ii) control of M segment gene expression is a critical aspect of IAV host adaptation needed to prevent M2-mediated dysregulation of vesicular homeostasis.Author summaryInfluenza A virus (IAV) pandemics arise when a virus adapted to a non-human host overcomes species barriers to successfully infect humans and sustain human-to-human transmission. To gauge the adaptive potential and therefore pandemic risk posed by a particular IAV, it is critical to understand the mechanisms underlying viral adaptation to human hosts. Here, we focused on the role of one of IAV’s eight gene segments, the M segment, in host adaptation. Comparing the growth of IAVs with avian- and human-derived M segments in avian and mammalian systems revealed that the avian M segment restricts viral growth specifically in mammalian cells. We show that the mechanism underlying this host range phenotype is a dysregulation of viral gene expression when the avian IAV M segment is transcribed in mammalian cells. In particular, excess production of the M2 protein results in viral interference with cellular functions on which the virus relies. Our results therefore reveal that the use of cellular machinery to control viral gene expression leaves the virus vulnerable to over- or under-production of critical viral gene products in a new host species.


2012 ◽  
Vol 86 (18) ◽  
pp. 10259-10260
Author(s):  
Shuai Cao ◽  
Yi Shi ◽  
Shuguang Tan ◽  
Hao Song ◽  
George F. Gao ◽  
...  

2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Ryan T. Behrens ◽  
Mounavya Aligeti ◽  
Ginger M. Pocock ◽  
Christina A. Higgins ◽  
Nathan M. Sherer

ABSTRACT HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.


Sign in / Sign up

Export Citation Format

Share Document