scholarly journals Potyvirus-induced gene silencing: the dynamic process of systemic silencing and silencing suppression

2007 ◽  
Vol 88 (8) ◽  
pp. 2337-2346 ◽  
Author(s):  
Elin Gammelgård ◽  
Maradumane Mohan ◽  
Jari P. T. Valkonen

Potato virus A (PVA; genus Potyvirus) was used for virus-induced gene silencing in a model system that included transgenic Nicotiana benthamiana (line 16c) expressing the gfp transgene for green fluorescent protein (GFP) and chimeric PVA (PVA–GFP) carrying gfp in the P1-encoding region. Infection of the 16c plants with PVA–GFP in five experiments resulted in a reproducible pattern of systemic gfp transgene silencing, despite the presence of the strong silencing-suppressor protein, HC-Pro, produced by the virus. PVA–GFP was also targeted by silencing, and virus-specific short interfering RNA accumulated from the length of the viral genome. Viral deletion mutants lacking the gfp insert appeared in systemically infected leaves and reversed silencing of the gfp transgene in limited areas. However, systemic gfp silencing continued in newly emerging leaves in the absence of the gfp-carrying virus, which implicated a systemic silencing signal that moved from lower leaves without interference by HC-Pro. Use of GFP as a visual marker revealed a novel, mosaic-like recovery phenotype in the top leaves. The leaf areas appearing red or purple under UV light (no GFP expression) contained little PVA and gfp mRNA, and corresponded to the dark-green islands observed under visible light. The surrounding green fluorescent tissues contained actively replicating viral deletion mutants that suppressed GFP silencing. Taken together, systemic progression of gene silencing and antiviral defence (RNA silencing) and circumvention of the silencing by the virus could be visualized and analysed in a novel manner.

2013 ◽  
Vol 26 (5) ◽  
pp. 503-514 ◽  
Author(s):  
Xianbao Deng ◽  
Jani Kelloniemi ◽  
Tuuli Haikonen ◽  
Anssi L. Vuorinen ◽  
Paula Elomaa ◽  
...  

Tobacco rattle virus (TRV) has a bipartite, positive-sense single-stranded RNA genome and is widely used for virus-induced gene silencing (VIGS) in plants. RNA1 of TRV that lacks the gene for the cysteine-rich 16K silencing-suppression protein infects plants systemically in the absence of RNA2. Here, we attempted to engineer RNA1 for use as a VIGS vector by inserting heterologous gene fragments to replace 16K. The RNA1 vector systemically silenced the phytoene desaturase (PDS) gene, although less efficiently than when the original VIGS vector system was used, which consists of wild-type RNA1 and engineered RNA2 carrying the heterologous gene. Infectious RNA1 mutants with a dysfunctional 16K suppressed silencing and enhanced transgene expression in green fluorescent protein-transgenic Nicotiana benthamiana following inoculation by agroinfiltration, unlike mutants that also lacked 29K, a movement protein (MP) gene. The 30K MP gene of Tobacco mosaic virus complemented in cis the movement defect but not the silencing suppression functions of TRV 29K. Silencing suppression by 29K occurred in the context of RNA1 replication but not in an agroinfiltration assay which tested 29K alone for suppression of sense-mediated silencing. Both 29K and 16K were needed to avoid necrotic symptoms in RNA1-infected N. benthamiana. The results shed new light on virulence factors of TRV.


2008 ◽  
Vol 89 (11) ◽  
pp. 2761-2766 ◽  
Author(s):  
Jingmin Ji ◽  
Andrea Glaser ◽  
Marion Wernli ◽  
Jan Martin Berke ◽  
Darius Moradpour ◽  
...  

Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.


2002 ◽  
Vol 15 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Wenping Qiu ◽  
Jong-Won Park ◽  
Herman B. Scholthof

The p19 protein (P19) of Tomato bushy stunt virus (TBSV) is a pathogenicity determinant with host-dependent effects on virus spread and symptom induction. In addition, results in this study confirm that Potato virus X-mediated delivery of P19 suppresses posttranscriptional gene silencing (PTGS). To study the relevance of this activity for TBSV biology, we evaluated whether TBSV activates virus-induced gene silencing (VIGS) and if this process is suppressed by P19. TBSV vectors with the green fluorescent protein (GFP) gene, either active or inactive for P19 expression, were inoculated onto GFP-transgenic Nicotiana bentha-miana plants. In the absence of P19 expression, VIGS was activated, as evidenced by the disappearance of GFP mRNA and green fluorescence. Coexpression of GFP and P19 from the TBSV vector suppressed VIGS, except in the newly emerging leaves. The suppressor activity required a central P19 region that is also known to be essential for host-dependent virus spread and symptom induction. Defective interfering RNAs (DIs) that contained the 3′ end of the GFP gene induced silencing very effectively. The concomitant DI-instigated reduction in P19 accumulation failed to suppress this process, analogous to the known P19 dosage effects for other biological activities. In conclusion, (i) TBSV and its DIs are very effective inducers of VIGS, (ii) P19 is a strong suppressor of PTGS, (iii) P19 is a moderate suppressor of VIGS, and (iv) the suppressor activity is influenced by genetic and dosage features that are also important for P19-associated pathogenesis.


2004 ◽  
Vol 70 (7) ◽  
pp. 3904-3909 ◽  
Author(s):  
Santiago Caballero ◽  
F. Xavier Abad ◽  
Fabienne Loisy ◽  
Françoise S. Le Guyader ◽  
Jean Cohen ◽  
...  

ABSTRACT Virus-like particles (VLPs) with the full-length VP2 and VP6 rotavirus capsid proteins, produced in the baculovirus expression system, have been evaluated as surrogates of human rotavirus in different environmental scenarios. Green fluorescent protein-labeled VLPs (GFP-VLPs) and particles enclosing a heterologous RNA (pseudoviruses), whose stability may be monitored by flow cytometry and antigen capture reverse transcription-PCR, respectively, were used. After 1 month in seawater at 20°C, no significant differences were observed between the behaviors of GFP-VLPs and of infectious rotavirus, whereas pseudovirus particles showed a higher decay rate. In the presence of 1 mg of free chlorine (FC)/liter both tracers persisted longer in freshwater at 20°C than infectious viruses, whereas in the presence of 0.2 mg of FC/liter no differences were observed between tracers and infectious rotavirus at short contact times. However, from 30 min of contact with FC onward, the decay of infectious rotavirus was higher than that of recombinant particles. The predicted Ct value for a 90% reduction of GFP-VLPs or pseudoviruses induces a 99.99% inactivation of infectious rotavirus. Both tracers were more resistant to UV light irradiation than infectious rotavirus in fresh and marine water. The effect of UV exposure was more pronounced on pseudovirus than in GFP-VLPs. In all types of water, the UV dose to induce a 90% reduction of pseudovirus ensures a 99.99% inactivation of infectious rotavirus. Recombinant virus surrogates open new possibilities for the systematic validation of virus removal practices in actual field situations where pathogenic agents cannot be introduced.


2006 ◽  
Vol 80 (20) ◽  
pp. 10055-10063 ◽  
Author(s):  
Adrian Valli ◽  
Ana Montserrat Martín-Hernández ◽  
Juan José López-Moya ◽  
Juan Antonio García

ABSTRACT The P1 protein of viruses of the family Potyviridae is a serine proteinase, which is highly variable in length and sequence, and its role in the virus infection cycle is not clear. One of the proposed activities of P1 is to assist HCPro, the product that viruses of the genus Potyvirus use to counteract antiviral defense mediated by RNA silencing. Indeed, an HCPro-coding region is present in all the genomes of members of the genera Potyvirus, Rymovirus, and Tritimovirus that have been sequenced. However, it was recently reported that a sequence coding for HCPro is lacking in the genome of Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, the fourth monopartite genus of the family. In this study, we provide further evidence that P1 enhances the activity of HCPro in members of the genus Potyvirus and show that it is duplicated in the ipomovirus CVYV. The two CVYV P1 copies are arranged in tandem, and the second copy (P1b) has RNA silencing suppression activity. CVYV P1b suppressed RNA silencing induced either by sense green fluorescent protein (GFP) mRNA or by a GFP inverted repeat RNA, indicating that CVYV P1b acts downstream of the formation of double-stranded RNA. CVYV P1b also suppressed local silencing in agroinfiltrated patches of transgenic Nicotiana benthamiana line 16c and delayed its propagation to the neighboring cells. However, neither the short-distance nor long-distance systemic spread of silencing of the GFP transgene was completely blocked by CVYV P1b. CVYV P1b and P1-HCPro from the potyvirus Plum pox virus showed very similar behaviors in all the assays carried out, suggesting that evolution has found a way to counteract RNA silencing by similar mechanisms using very different proteins in viruses of the same family.


2012 ◽  
Vol 39 (9) ◽  
pp. 764 ◽  
Author(s):  
Gi-Ho Lee ◽  
Seong-Han Sohn ◽  
Eun-Young Park ◽  
Young-Doo Park

The chemical modification of DNA by methylation is a heritable trait and can be subsequently reversed without altering the original DNA sequence. Methylation can reduce or silence gene expression and is a component of a host’s defence response to foreign nucleic acids. In our study, we employed a plant transformation strategy using Nicotiana benthamiana Domin to study the heritable stability of the introduced transgenes. Through the introduction of the cauliflower mosaic virus (CaMV) 35S promoter and the green fluorescent protein (GFP) reporter gene, we demonstrated that this introduced promoter often triggers a homology-dependent gene-silencing (HDGS) response. These spontaneous transgene-silencing phenomena are due to methylation of the CaMV 35S promoter CAAT box during transgenic plant growth. This process is catalysed by SU(VAR)3–9 homologue 9 (SUVH9), histone deacetylase 1 (HDA1) and domains rearranged methylase 2 (DRM2). In particular, we showed from our data that SUVH9 is the key regulator of methylation activity in epigenetically silenced GFP transgenic lines; therefore, our findings demonstrate that an introduced viral promoter and transgene can be subject to a homology-dependent gene-silencing mechanism that can downregulate its expression and negatively influence the heritable stability of the transgene.


2019 ◽  
Vol 20 (16) ◽  
pp. 3976 ◽  
Author(s):  
Hongqiu Zeng ◽  
Yanwei Xie ◽  
Guoyin Liu ◽  
Yunxie Wei ◽  
Wei Hu ◽  
...  

Agrobacterium-mediated transient expression and virus-induced gene silencing (VIGS) are very useful in functional genomics in plants. However, whether these methods are effective in cassava (Manihot esculenta), one of the most important tropical crops, remains elusive. In this study, we used green fluorescent protein (GFP) and β-glucuronidase (GUS) as reporter genes in a transient expression assay. GFP or GUS could be detected in the infiltrated leaves at 2 days postinfiltration (dpi) and were evidenced by visual GFP and GUS assays, reverse-transcription PCR, and Western blot. In addition, phytoene desaturase (PDS) was used to show the silencing effect in a VIGS system. Both Agrobacterium GV3101 and AGL-1 with tobacco rattle virus (TRV)-MePDS-infiltrated distal leaves showed an albino phenotype at 20 dpi; in particular, the AGL-1-infiltrated plants showed an obvious albino area in the most distal leaves. Moreover, the silencing effect was validated by molecular identification. Notably, compared with the obvious cassava mosaic disease symptom infiltrated by African-cassava-mosaic-virus-based VIGS systems in previous studies, TRV-based VIGS-system-infiltrated cassava plants did not show obvious virus-induced disease symptoms, suggesting a significant advantage. Taken together, these methods could promote functional genomics in cassava.


2007 ◽  
Vol 6 (8) ◽  
pp. 1299-1309 ◽  
Author(s):  
T. Krajaejun ◽  
G. M. Gauthier ◽  
C. A. Rappleye ◽  
T. D. Sullivan ◽  
B. S. Klein

ABSTRACT A high-throughput strategy for testing gene function would accelerate progress in our understanding of disease pathogenesis for the dimorphic fungus Blastomyces dermatitidis, whose genome is being completed. We developed a green fluorescent protein (GFP) sentinel system of gene silencing to rapidly study genes of unknown function. Using Gateway technology to efficiently generate RNA interference plasmids, we cloned a target gene, “X,” next to GFP to create one hairpin to knock down the expression of both genes so that diminished GFP reports target gene expression. To test this approach in B. dermatitidis, we first used LACZ and the virulence gene BAD1 as targets. The level of GFP reliably reported interference of their expression, leading to rapid detection of gene-silenced transformants. We next investigated a previously unstudied gene encoding septin and explored its possible role in morphogenesis and sporulation. A CDC11 septin homolog in B. dermatitidis localized to the neck of budding yeast cells. CDC11-silenced transformants identified with the sentinel system grew slowly as flat or rough colonies on agar. Microscopically, they formed ballooned, distorted yeast cells that failed to bud, and they sporulated poorly as mold. Hence, this GFP sentinel system enables rapid detection of gene silencing and has revealed a pronounced role for septin in morphogenesis, budding, and sporulation of B. dermatitidis.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax0801 ◽  
Author(s):  
Minh Khanh Nguyen ◽  
Cong Truc Huynh ◽  
Alex Gilewski ◽  
Samantha E. Wilner ◽  
Keith E. Maier ◽  
...  

Small interfering RNA (siRNA) has found many applications in tissue regeneration and disease therapeutics. Effective and localized siRNA delivery remains challenging, reducing its therapeutic potential. Here, we report a strategy to control and prolong siRNA release by directly tethering transfection-capable siRNA to photocrosslinked dextran hydrogels. siRNA release is governed via the hydrolytic degradation of ester and/or disulfide linkages between the siRNA and hydrogels, which is independent of hydrogel degradation rate. The released siRNA is shown to be bioactive by inhibiting protein expression in green fluorescent protein–expressing HeLa cells without the need of a transfection agent. This strategy provides an excellent platform for controlling nucleic acid delivery through covalent bonds with a biomaterial and regulating cellular gene expression, which has promising potential in many biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document