scholarly journals Effect of Interactions on the Nutrient Status of a Tropical Soil Treated with Green Manures and Inorganic Phosphate Fertilizers

2004 ◽  
Vol 4 ◽  
pp. 393-414
Author(s):  
Abdul R. Bah ◽  
Zaharah A. Rahman ◽  
Aminuddin Hussin

Integrated nutrient management systems using plant residues and inorganic P fertilizers have high potential for increasing crop production and ensuring sustainability in the tropics, but their adoption requires in-depth understanding of nutrient dynamics in such systems. This was examined in a highly weathered tropical soil treated with green manures (GMs) and P fertilizers in two experiments conducted in the laboratory and glasshouse. The treatments were factorial combinations of the GMs (Calopogonium caeruleum, Gliricidia sepium, andImperata cylindrica) and P fertilizers (phosphate rocks [PRs] from North Carolina, China, and Algeria, and triple superphosphate) replicated thrice. Olsen P, mineral N, pH, and exchangeable K, Ca, and Mg were monitored in a laboratory incubation study for 16 months. The change in soil P fractions and available P was also determined at the end of the study. Phosphorus available from the amendments was quantified at monthly intervals for 5 months by33P-32P double isotopic labeling in the glasshouse usingSetaria sphacelataas test crop. The GMs were labeled with33P to determine their contribution to P taken up bySetaria, while that from the P fertilizers was indirectly measured by labeling the soil with32P. The P fertilizers hardly changed Olsen P and exchangeable cations during 16 months of incubation. The legume GMs and legume GM+P did not change Olsen P, lowered exchangeable Ca, and increased exchangeable K about threefold (4.5 cmol[+]kg−1soil) in the first 4 months, even as large amounts of NH4-N accumulated (~1000 mg kg soil−1) and soil pH increased to more than 6.5. Afterwards, Olsen P and exchangeable Ca and Mg increased (threefold) as NH4+-N and soil pH declined. The legume GMs also augmented reversibly sorbed P in Al-P and Fe-P fractions resulting in high residual effect in the soil, while fertilizer-P was irreversibly retained. The GMs increased PR-P utilization by 40 to over 80%, mobilized soil P, and markedly enhanced uptake of N, K, Ca, and Mg. Thus GMs+PRs is an appropriate combination for correcting nutrient deficiencies in tropical soils.

2016 ◽  
Vol 96 (2) ◽  
pp. 191-198 ◽  
Author(s):  
M.A. Ribey ◽  
I.P. O’Halloran

Environmental indices for soil P limit P applications when soil tests and risk of P losses exceed a given threshold. Producers’ reluctance to reduce P inputs often stem from concerns regarding reduced crop production and soil fertility. Our objectives were to identify changes in soil P fractions after 4 yr of repeated manure or fertilizer P applications at rates ≤ crop removal by corn (Zea mays L.), and the impact of these applications on yields. Olsen P and soil P fractions extracted using a modified Hedley P fractionation procedure were measured. Corn yields were nonresponsive to P applications. After 4 yr, Olsen P was 16.6 and 24.6 mg kg−1 at the application rates of 0 and 33 kg P ha−1 yr−1, respectively, for the inorganic fertilizer treatment indicating that soil P drawdown was occurring. Only the most labile forms of Pi (resin and bicarbonate extractable) were affected by treatment, with greater values at higher P application rates. Adherence to Ontario’s P index recommendations for P applications at or below crop removal should not be a crop production concern. Furthermore, given the rate of soil labile P drawdown, routine soil testing (every 3–5 yr) would identify agronomically significant changes in soil test P before the crop yield is impacted.


Author(s):  
M.F. Hawke

Large areas of pine forests have been logged and the land sold to farmers for converting to pasture in the South Waikato district. This land use change is expected to continue, given the present commodity prices. A trial was conducted on an ex-forest site at Rotorua to assess the feasibility of converting land from forestry to pastoral agriculture. The establishment of pasture (ryegrass and white clover) on an ex-forest site was successful and results after 4 years indicated there were no major problems with the conversion. An application of 4 t lime/ha lifted soil pH levels into the optimum range of 5.8-6.0 and an annual maintenance dressing of 40 kg phosphorus (P) /ha has more than maintained optimum Olsen P levels of 35-45 μg/ml for pasture growth. It is expected however that commercial sites where post-forest soil P levels were lower than on the Rotorua trial site, would require higher capital P fertiliser input. Soil fauna surveys indicated a recolonisation of some soil macro fauna e.g. earthworms, grass grubs and clover root weevil. Recommendations for converting pines to pasture include removal of stumps and forest debris (where practical), vigorous weed control and the application of nutrients such as phosphate that promote pasture production. Keywords: forestry, soil Olsen phosphorus, soil pH, pasture, Pinus radiata


2016 ◽  
Vol 96 (4) ◽  
pp. 472-484 ◽  
Author(s):  
J.A. Surani Chathurika ◽  
Darshani Kumaragamage ◽  
Francis Zvomuya ◽  
Olalekan O. Akinremi ◽  
Donald N. Flaten ◽  
...  

Fertility enhancement with biochar application is well documented for tropical acidic soils; however, benefits of biochar coapplied with synthetic fertilizers (SFs) on soil fertility are not well documented, particularly for alkaline chernozems. We examined the short-term interactive effects of woodchip biochar amendment with fertilizers on selected soil properties, available phosphorus (P), and P fractions of two alkaline Chernozems from Manitoba. Treatments were (1) urea and monoammonium phosphate fertilizers, (2) biochar at 10 g kg−1, (3) biochar at 20 g kg−1, (4) biochar at 10 g kg−1with fertilizers, (5) biochar at 20 g kg−1with fertilizers, and (6) a control. Treated soils were analysed for pH, electrical conductivity (EC), and Olsen P concentration biweekly, and for P fractions, cation exchange capacity (CEC), organic carbon (OC), and wet aggregate stability after 70 d of incubation. Biochar amendment without fertilizers significantly increased soil pH and CEC but had no effect on EC, while coapplication with fertilizers significantly increased Olsen P and labile P concentrations. When coapplied with fertilizers, biochar did not significantly increase soil pH relative to the control. Results suggest that biochar improved soil properties and available P in alkaline Chernozems, and the beneficial effects were enhanced when coapplied with SFs.


1976 ◽  
Vol 86 (1) ◽  
pp. 117-125 ◽  
Author(s):  
M. J. Jones

SUMMARYThe residues from a continuous millet–maize rotation, grown at two levels of phosphate and two levels of nitrogen fertilization, were either burned and the ash incorporated; chopped and incorporated unburned; or completely removed. After 3 years, differences in soil organic matter were small and largely non-significant, but the ash treatment had minimized the general fall in soil pH, and the ash and the unburned residue treatments had both conserved topsoil exchangeable K and Mg, which, where the residues had been removed, had declined by 44 and 12%, respectively. Fertilizer effects were also significant; single superphosphate had increased exchangeable Ca and lessened the fall in soil pH; calcium ammonium nitrate had depleted exchangeable Mg generally and had lowered pH and exchangeable Ca particularly where unburned residues had been returned.A balance sheet of soil cations (0–30 cm), drawn up from soil and crop analyses and known fertilizer inputs shows, first, that whereas the calcium added in single superphosphate increased the exchangeable reserves of this nutrient, that added as calcium ammonium nitrate did not and must be presumed lost by leaching; secondly, the decline in exchangeable K where residues were removed was much less than the total crop removal, indicating a probable substantial release from non-exchangeable form.In the fourth season, treatment-induced soil differences, in particular the ratios between exchangeable cations, significantly affected the chemical composition of the maize test crop but not its final yield.


2001 ◽  
Vol 137 (4) ◽  
pp. 379-395 ◽  
Author(s):  
M. F. ALLISON ◽  
J. H. FOWLER ◽  
E. J. ALLEN

Twenty-two field experiments in England, done between 1986 and 2000, tested the effects of phosphorus (P) fertilizers on number of tubers and tuber yield in Solanum tuberosum. Applying P fertilizer resulted in statistically significant increases in tuber yield in six experiments and the optimal P application rate ranged from c. 90 to 180 kg P/ha. Statistically significant increases in yield in response to application of P fertilizers were found only in soils that contained < 26 mg Olsen-P/l (< Index 3) and appeared to be associated with increases in ground cover. Statistically significant increases in the number of tubers in response to application of P fertilizer were found only in soils that contained < 16 mg Olsen-P/l (< Index 2) and appeared to be associated with an increase in ground cover by the time of tuber initiation (c. 5–6 week after planting). Each tonne of tuber fresh-weight yield was, on average, associated with removal of 0·39 kg P but regression analysis showed that this value increased as soil Olsen-P increased. Re-analysis of published data showed that whilst the probability of a response to P fertilizer and the optimum P application rate may have been overestimated, some statistically significant responses to P fertilizer did occur when Olsen-P was > 26 mg/l. The absence of yield responses on P Index 3 soils found in the current experiments was attributed to increased use of irrigation that may have increased the availability of soil P. Re-interpretation of data from long-term experiments showed that the agronomic benefits of increasing soil P status by applying more P than is removed by harvested crop parts, are small. Since large P residues, estimated by Olsen-P or degree of soil P saturation, are associated with desorption of P and consequent loss to drainage water it is inadvisable to increase soil P above Index 3. For these reasons, no P fertilizer is recommended for Index 4 soils, an amount equivalent to replacement is recommended for Index 3 soils but up to 110–130 kg P/ha should be applied to Index 0 soils. Applications of foliar P had no effect on number of tubers or tuber yield and this practice cannot be recommended.


Author(s):  
Xiaojun Yan ◽  
Wenhao Yang ◽  
Xiaohui Chen ◽  
Mingkuang Wang ◽  
Weiqi Wang ◽  
...  

Excess phosphorus (P) accumulation in the soil can change the bioavailability of P and increase the leaching risks, but the quantitative evaluation of these responses in acidic red soil is lacking. This study aimed to investigate the composition of soil P fractions under different phosphorus apparent balances (PAB) in acidic red soil and the bioavailability and the leaching change-points of different P fractions. Five phosphorus (P) fertilization rates were applied (0, 16.38, 32.75, 65.50, 131.00 kg P·ha−1) in every sweet corn cultivation from the field experiment, and the treatments were marked as P0, P1, P2, P3, and P4, respectively. The PAB showed negative values in P0 and P1 which were −49.0 and −15.0 kg P·ha–1 in two years, respectively. In contrast, PAB in P2 as well as in P3 and P4 were positive, the content ranging from 40.2 to 424.3 kg P·ha−1 in two years. Per 100 kg ha−1 P accumulate in the soil, the total P increased by 44.36 and 10.41 mg kg−1 in the surface (0–20 cm) and subsurface (20–40 cm) soil, respectively. The content of inorganic P fractions, including solution phosphate (Sol-P), aluminum phosphate (Al-P), iron phosphate (Fe-P), reduction phosphate (Red-P), and calcium phosphate (Ca-P), significantly increased by 0.25, 16.22, 22.08, 2.04, and 5.08 mg kg−1, respectively, in surface soil per 100 kg ha−1 P accumulated in the soil. Path analysis showed that the most important soil P fractions contributing to Olsen-P were Sol-P and Al-P, which can directly affect Olsen-P, and their coefficients were 0.24 and 0.73, respectively. Furthermore, the incubation experiments were conducted in the laboratory to investigate the leaching risk of different P fractions, and they showed Sol-P was a potential source of leaching, and the leaching change-points of Al-P and Fe-P were 74.70 and 78.34 mg·kg–1, respectively. Continuous P that accumulated in soil changed the composition of P fractions, and the bioavailability as well as the leaching risks increased. This is important in optimizing soil P fertilization management in agricultural ecosystems based on the bioavailability and critical levels for leaching of P fractions.


2021 ◽  
Author(s):  
Yuan Wang ◽  
Wei Zhang ◽  
Torsten Müller ◽  
Prakash Lakshmanan ◽  
Yu Liu ◽  
...  

Abstract. Recycling of agricultural wastes to reduce mineral fertilizer input, in particular phosphorous (P), plays crucial role in sustainable agriculture production. Understanding the transformation of phosphorous (P) fractions and their bioavailability following soil application of different renewable P-contained fertilizers is very important for improving P use efficiency and reducing environmental risks. In this study, the effects of mineral P-fertilizer superphosphate and recycled P-fertilizers, i.e., poultry manure, cattle manure, maize straw and cattle bone meal, on their distribution to different soil P fractions, their transformation and the availability of soil P were determined by soil P sequential fractionation and 31P solution nuclear magnetic resonance (NMR). The results showed that addition of mineral P fertilizer, poultry manure and cattle manure increased P fixation in a red soil more than that in a fluvo-aquic soil. In both fluvo-aquic and red soils, cattle manure out-performed all other recycled P sources used in improving soil P availability. The concentration of Olsen-P in fluvo-aquic and red soils supplemented with cattle manure were increased by 41 %–380 % and 16 %–70 % than the other recycled P sources. A structural equation model (SEM) explained 95 % and 91 % of Olsen-P variation in fluvo-aquic and red soils, respectively. Labile P fractions had positive effects on Olsen-P of fluvo-aquic and red soils. 31P-NMR study showed that amount of orthophosphate was the main factor affecting the availability of P from different P sources. In summary, cattle manure was found to be a superior renewable source of P in improving bioavailable P in soil, and its use thus has considerable practical significance in P recycling.


Soil Research ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 491 ◽  
Author(s):  
DM Crawford ◽  
TG Baker ◽  
J Maheswaran

Relationships between changes in soil pH and changes in other soil chemical properties were examined using data from a survey of 107 pasture sites from across Victoria. At each site, soil samples (0-5, 5-10, 10-15 and 15-20 cm depths) were taken from the pasture and an adjacent undisturbed (reference) area for chemical analysis. Changes in soil chemical properties were inferred from differences between pasture and reference soils. Increases in extractable Al and extractable Mn and decreases in the sum of exchangeable cations were associated with decreases in pH. Changes in soil organic C, total soil N and total soil P were not associated with changes in pH but were related to pasture composition at each site. Increases in total soil P and exchangeable Ca, and decreases in exchangeable Mg were partly attributed to the application of superphosphate. Decreases in electrical conductivity are discussed in relation to vegetation and salinization.


2011 ◽  
Vol 60 (2) ◽  
pp. 343-358
Author(s):  
Péter Csathó ◽  
Marianna Magyar ◽  
Erzsébet Osztoics ◽  
Katalin Debreczeni ◽  
Katalin Sárdi

A szabadföldi trágyázási (tartam)kísérletek eredményeit talaj-, illetve diagnosztikai célú növényvizsgálatok segítségével tudjuk kiterjeszteni, általánosítani – figyelembe véve természetesen a kiterjesztés korlátait is. Célszerűnek láttuk ezen túl a talaj könnyen oldható tápelem-, közöttük P-tartalmát is meghatározni a hazánkban hivatalosan elfogadott AL- (ammónium-laktátos) módszer mellett az Európai Unióban és Észak-Amerikában alkalmazott P-tesztekkel is (CaCl2-, H2O-, Olsen-, Bray1-, LE-, Mehlich3- stb.) a hazai OMTK kísérletek talajmintáiban. A kísérleti helyek talajtulajdonságaiban megnyilvánuló jelentős különbségek lehetőséget adnak rá, hogy a talaj P-teszteket – és a növényi P-felvételt – jellegzetes hazai talajokon, sokszor szélsőséges talajparaméterek mellett vizsgáljuk. Az egyes P-szintek között a 28 év átlagában mintegy évi 50 kg P2O5·ha-1volt a különbség. A P0-szinten mért P-tartalmak jól jelezték az egyes kísérleti helyek talajának eltérő P-ellátottságát, illetve, közvetve, fizikai féleségében, pH és mészállapotában meglévő különbségeket. A P2-szinten – a hazai talajokra, P-igényes növényekre a hazai szabadföldi P-trágyázási tartamkísérleti adatbázisban talált összefüggésekre alapozott – új AL-P határértékek szerint csupán a bicsérdi csernozjom barna erdőtalajon nem javult a P-ellátottság legalább a „jó” szintig. Vizsgálataink megerősítették az AL-módszer függőségét a CaCO3-tartalomtól: a Mehlich3 módszerrel való összefüggésben a karbonátmentes és a karbonátos talajok csoportja erőteljesen elkülönült egymástól. Az AL-P korrekció elvégzése, azaz az AL-P értékeknek egy standard talajtulajdonság-sorra való konvertálása (KA: 36; pH(KCl): 6,8; CaCO3: 0,1%) látványosan csökkentette az AL-módszernek a talaj CaCO3-tartalmától való függőségét. Az AL-P és Olsen-P, valamint a korrigált AL-P és Olsen-P tartalmak összehasonlításában ugynakkor ugyanez az összefüggés nem volt állapítható, ami arra utal, hogy az Olsen módszer bizonyos fokig szintén pH- és mészállapot függő. Kísérleti eredményeink megerősítették a Sarkadi-féle AL-P korrekciós modell helytálló voltát. Fenti megállapításunkat ugyanakkor a növényi P-tartalmakkal való összefüggéseknek is igazolniuk kell. Szükséges tehát a talajvizsgálati eredményeknek a diagnosztikai célú növényvizsgálatokkal, valamint a terméseredményekkel való összevetése. A tartamkísérletek talajai lehetőséget nyújtanak a környezetvédelmi célú P-vizsgálatok értékelésére, a talaj P-feltöltöttsége környezeti kockázatának becslésére. Ezekkel a kérdésekkel a cikksorozat további részeiben kívánunk foglalkozni.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


Sign in / Sign up

Export Citation Format

Share Document