scholarly journals Microbial-induced Regulation of Syndecan Expression: Important Host Defense Mechanism or an Opportunity for Pathogens?

2006 ◽  
Vol 6 ◽  
pp. 442-445 ◽  
Author(s):  
Michael F. Smith ◽  
Jitendra K. Gautam ◽  
Steven G. Black ◽  
Peter B. Ernst
1980 ◽  
Vol 29 (3) ◽  
pp. 1062-1066
Author(s):  
G S Giebink ◽  
T H Dee ◽  
Y Kim ◽  
P G Quie

Pneumococcal opsonic activity and concentrations of pneumococcal capsular polysaccharide antigen, C3, C4 factor B, C3 and factor B breakdown products were measured in the serum obtained acutely from 12 patients with serious pneumococcal disease. One patient showed markedly reduced pneumococcal opsonic activity, borderline-low C3, and the presence of C3 and factor B breakdown products and died. Although eight additional patients showed depressed levels of C3 or C4 or the presence of C3 or factor B breakdown products, none had reduced pneumococcal opsonic activity. All of the three remaining patients had normal opsonic activity and C3 and C4 levels. Covalescent serum was obtained from eight patients; six had normal C3 and C4 levels, and two had persistent C4 depression. These data show that complement is activated during pneumococcal disease and suggest that extensive complement activation may impair pneumococcal opsonic activity in certain patients and thereby compromise an important host defense mechanism.


2009 ◽  
Vol 61 (3) ◽  
pp. 407-412 ◽  
Author(s):  
Havva Ekmekçi ◽  
Belma Aslim ◽  
Önal Darilmaz

In this work, autoaggregation and factors involved in the autoaggregation ability of vaginal lactobacilli were studied. The autoaggregation ability of 28 lactobacilli strains was positive. The effects of various factors on autoaggregation were also evaluated. Lactobacillus jensenii A1, L. salivarius I1, and L. cellobiosus I3 showed higher autoaggregation in acidic conditions and lower autoaggregation in hot (70 and 85oC) conditions. The L. salivarius I1 strain, which exhibited high autoaggregation activity, also showed good autoaggregation in pepsin, lipase, and sodium periodate, as well as under conditions of sonication and heat. The results of this study suggest that lactobacilli showing high autoaggregation may constitute an important host defense mechanism against infections as a probiotic.


Author(s):  
Md Jashim Uddin ◽  
Jhansi L. Leslie ◽  
Stacey L. Burgess ◽  
Noah Oakland ◽  
Brandon Thompson ◽  
...  

AbstractEntamoeba histolytica is a pathogenic protozoan parasite that causes intestinal colitis, diarrhea, and in some cases, liver abscess. Through transcriptomics analysis, we observed that E. histolytica infection was associated with increased expression of IL-33 mRNA in both the human and murine colon. IL-33, the IL-1 family cytokine, is released after cell injury to alert the immune system of tissue damage. Treatment with recombinant IL-33 protected mice from amebic infection and intestinal tissue damage; moreover, blocking IL-33 signaling made mice more susceptible to amebiasis. IL-33 limited the recruitment of inflammatory immune cells and decreased the pro-inflammatory cytokine IL-6 in the cecum. Type 2 immune responses were upregulated by IL-33 treatment during amebic infection. Interestingly, administration of IL-33 protected RAG2–/– mice but not RAG2−/−γc−/− mice, demonstrating that IL-33-mediated protection required the presence of innate lymphoid cells (ILCs). IL-33 induced recruitment of ILC2 but not ILC1 and ILC3 in RAG2−/− mice. At baseline and after amebic infection, there was a significantly higher IL13+ILC2s in C57BL/J mice, which are naturally resistant to amebiasis, than CBA/J mice. Adoptive transfer of ILC2s to RAG2−/−γc−/− mice restored IL-33-mediated protection. These data reveal that the IL-33-ILC2 pathway is an important host defense mechanism against amebic colitis.


2021 ◽  
Author(s):  
Samrah Masud ◽  
Rui Zhang ◽  
Tomasz K. Prajsnar ◽  
Annemarie H. Meijer

Dram1 is a stress and infection inducible autophagy modulator that functions downstream of transcription factors p53 and NFκB. Using a zebrafish embryo infection model, we have previously shown that Dram1 provides protection against the intracellular pathogen Mycobacterium marinum by promoting the p62-dependent xenophagy of bacteria that have escaped into the cytosol. However, the possible interplay between Dram1 and other anti-bacterial autophagic mechanisms remains unknown. Recently, LC3-associated phagocytosis (LAP) has emerged as an important host defense mechanism that requires components of the autophagy machinery and targets bacteria directly in phagosomes. Our previous work established LAP as the main autophagic mechanism by which macrophages restrict growth of Salmonella Typhimurium in a systemically infected zebrafish host. We therefore employed this infection model to investigate the possible role of Dram1 in LAP. Morpholino knockdown or CRISPR/Cas9-mediated mutation of Dram1 led to reduced host survival and increased bacterial burden during S. Typhimurium infections. In contrast, overexpression of dram1 by mRNA injection curtailed Salmonella replication and reduced mortality of the infected host. During the early response to infection, GFP-Lc3 levels in transgenic zebrafish larvae correlated with the dram1 expression level, showing over two-fold reduction of GFP-Lc3-Salmonella association in dram1 knockdown or mutant embryos and an approximately 30% increase by dram1 overexpression. Since LAP is known to require the activity of the phagosomal NADPH oxidase, we used a Salmonella biosensor strain to detect bacterial exposure to reactive oxygen species (ROS) and found that the ROS response was largely abolished in the absence of dram1. Together, these results demonstrate the host protective role of Dram1 during S. Typhimurium infection and suggest a functional link between Dram1 and the induction of LAP.


2018 ◽  
Vol 218 (9) ◽  
pp. 1424-1435 ◽  
Author(s):  
Alessandra di Masi ◽  
Loris Leboffe ◽  
Fabio Polticelli ◽  
Federica Tonon ◽  
Cristina Zennaro ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1355 ◽  
Author(s):  
Junghwan Lee ◽  
Ji-Ae Choi ◽  
Soo-Na Cho ◽  
Sang-Hun Son ◽  
Chang-Hwa Song

Apoptosis is an important host defense mechanism against mycobacterial infection. However, the molecular mechanisms regulating apoptosis during mycobacterial infection are not well known. Recent reports suggest that bacterial infection regulates mitochondrial fusion and fission in various ways. Here, we investigated the role of mitochondria in Mycobacterium tuberculosis (Mtb)-infected macrophages. Mtb H37Rv (Rv) infection induced mitofusin 2 (MFN2) degradation, leading to mitochondrial fission. Interestingly, Mtb H37Ra (Ra) infection induced significantly greater mitochondrial fragmentation than Rv infection. Mtb-mediated Parkin, an E3 ubiquitin ligase, contributed to the degradation of MFN2. To evaluate the role of endoplasmic reticulum stress in the production of Parkin during Mtb infection, we analyzed Parkin production in 4-phenylbutyric acid (4-PBA)-pretreated macrophages. Pretreatment with 4-PBA reduced Parkin production in Mtb-infected macrophages. In contrast, the level of MFN2 production recovered to a level similar to that of the unstimulated control. In addition, Ra-infected macrophages had reduced mitochondrial membrane potential (MMP) compared to those infected with Rv. Interestingly, intracellular survival of mycobacteria was decreased in siMFN2-transfected macrophages; in contrast, overexpression of MFN2 in macrophages increased Mtb growth compared with the control.


2019 ◽  
Vol 51 (12) ◽  
pp. 1-10 ◽  
Author(s):  
Yi Sak Kim ◽  
Prashanta Silwal ◽  
Soo Yeon Kim ◽  
Tamotsu Yoshimori ◽  
Eun-Kyeong Jo

AbstractMycobacterium tuberculosis (Mtb) is a major causal pathogen of human tuberculosis (TB), which is a serious health burden worldwide. The demand for the development of an innovative therapeutic strategy to treat TB is high due to drug-resistant forms of TB. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents and small molecules may be beneficial in restricting intracellular Mtb infection, even with multidrug-resistant Mtb strains. Recent studies have revealed the essential roles of host nuclear receptors (NRs) in the activation of the host defense through antibacterial autophagy against Mtb infection. In particular, we discuss the function of estrogen-related receptor (ERR) α and peroxisome proliferator-activated receptor (PPAR) α in autophagy regulation to improve host defenses against Mtb infection. Despite promising findings relating to the antitubercular effects of various agents, our understanding of the molecular mechanism by which autophagy-activating agents suppress intracellular Mtb in vitro and in vivo is lacking. An improved understanding of the antibacterial autophagic mechanisms in the innate host defense will eventually lead to the development of new therapeutic strategies for human TB.


Sign in / Sign up

Export Citation Format

Share Document