scholarly journals Effects of low temperature-adapted Saccharomyces cerevisiae Y297 strain and fermentation temperature on the quality characteristics of Yakju

2016 ◽  
Vol 23 (5) ◽  
pp. 666-672 ◽  
Author(s):  
Dong-Jun Seo ◽  
Soo-Hwan Yeo ◽  
Ji-Young Mun ◽  
Seong Yeol Baek
2016 ◽  
Vol 45 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Han Sub Kwak ◽  
Jae Soon Seo ◽  
Haejung Bae ◽  
Hwajong Lee ◽  
Youngseung Lee ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 894
Author(s):  
Johannes Pitsch ◽  
Georg Sandner ◽  
Jakob Huemer ◽  
Maximilian Huemer ◽  
Stefan Huemer ◽  
...  

Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are associated with digestive disorders and with diseases such as irritable bowel syndrome. In this study, we determined the FODMAP contents of bread, bakery products, and flour and assessed the effectiveness of sourdough fermentation for FODMAP reduction. The fermentation products were analyzed to determine the DP 2–7 and DP >7 fructooligosaccharide (FOS) content of rye and wheat sourdoughs. FOSs were reduced by Acetobacter cerevisiae, Acetobacter okinawensis, Fructilactobacillus sanfranciscensis, and Leuconostoc citreum to levels below those in rye (−81%; −97%) and wheat (−90%; −76%) flours. The fermentation temperature influenced the sourdough acetic acid to lactic acid ratios (4:1 at 4 °C; 1:1 at 10 °C). The rye sourdough contained high levels of beneficial arabinose (28.92 g/kg) and mannitol (20.82 g/kg). Our study contributes in-depth knowledge of low-temperature sourdough fermentation in terms of effective FODMAP reduction and concurrent production of desirable fermentation byproducts.


2012 ◽  
Vol 32 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Si-Young Kim ◽  
Ji-Hun Choi ◽  
Yun-Sang Choi ◽  
Hack-Youn Kim ◽  
Kwang-Il Ahn ◽  
...  

2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Bruna Inez Carvalho Figueiredo ◽  
Margarete Alice Fontes Saraiva ◽  
Paloma Patrick de Souza Pimenta ◽  
Miriam Conceição de Souza Testasicca ◽  
Geraldo Magela Santos Sampaio ◽  
...  

ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in the use of breeding/hybridization techniques to generate yeast strains that would be appropriate for producing new lager beers by exploring the capacity of cachaça yeast strains to flocculate and to ferment maltose at low temperature, with the concomitant production of flavoring compounds.


2019 ◽  
Vol 11 (7) ◽  
pp. 2013 ◽  
Author(s):  
Nadeem Abbasi ◽  
Irfan Ali ◽  
Ishfaq Hafiz ◽  
Mekhled Alenazi ◽  
Muhammad Shafiq

The peach industry faces serious economic losses because of the short “green” life of the fruit at postharvest. In the present study, we investigated the effects of putrescine (PUT) application on the quality characteristics, pattern of ripening, storage behaviour and shelf life of peach fruit during low-temperature storage. The aqueous solution of PUT (0, 1, 2 and 3 mM) was applied to the peach trees at three distinctive stages of fruit growth and development. The fruits, harvested at the commercial stage of maturity, were stored at 1 ± 1 °C and 90 ± 2% relative humidity for 6 weeks. The data for fruit firmness, total soluble solids (SSC), titratable acidity (TA), ascorbic acid (AsA) content, rate of ethylene production, chilling injury (CI) index and colour perception were collected at harvest and then on a weekly basis throughout the storage period. The results showed that spray application of PUT significantly reduced the incidence of CI and reduced the rates of fruit softening, loss in fruit weight, SSC, TA, AsA content and fading of skin colour during storage, regardless of the doses of PUT applied, or the time of application. However, the positive effects on the quality characteristics of peach fruit, including CI, were more pronounced with the higher doses of PUT, specifically when applied at 2 mM. In conclusion, CI in peach fruit may be substantially alleviated by the spray application of 1–3 mM PUT during fruit growth without compromising the quality of the fruit for up to 6 weeks in low-temperature storage.


2002 ◽  
Vol 37 (4) ◽  
pp. 425-441 ◽  
Author(s):  
Sergio R. Vaudagna ◽  
Guillermo Sanchez ◽  
Maria S. Neira ◽  
Ester M. Insani ◽  
Alyandra B. Picallo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document