scholarly journals Phylogenetic Identification and Functional Characterization of Orthologs and Paralogs across Human, Mouse, Fly, and Worm

2014 ◽  
Author(s):  
Yi-Chieh Wu ◽  
Mukul S Bansal ◽  
Matthew D Rasmussen ◽  
Javier Herrero ◽  
Manolis Kellis

Model organisms can serve the biological and medical community by enabling the study of conserved gene families and pathways in experimentally-tractable systems. Their use, however, hinges on the ability to reliably identify evolutionary orthologs and paralogs with high accuracy, which can be a great challenge at both small and large evolutionary distances. Here, we present a phylogenomics-based approach for the identification of orthologous and paralogous genes in human, mouse, fly, and worm, which forms the foundation of the comparative analyses of the modENCODE and mouse ENCODE projects. We study a median of 16,101 genes across 2 mammalian genomes (human, mouse), 12 Drosophila genomes, 5 Caenorhabditis genomes, and an outgroup yeast genome, and demonstrate that accurate inference of evolutionary relationships and events across these species must account for frequent gene-tree topology errors due to both incomplete lineage sorting and insufficient phylogenetic signal. Furthermore, we show that integration of two separate phylogenomic pipelines yields increased accuracy, suggesting that their sources of error are independent, and finally, we leverage the resulting annotation of homologous genes to study the functional impact of gene duplication and loss in the context of rich gene expression and functional genomic datasets of the modENCODE, mouse ENCODE, and human ENCODE projects.

2015 ◽  
Author(s):  
Leonardo de Oliveira Martins ◽  
David Posada

The history of particular genes and that of the species that carry them can be different due to different reasons. In particular, gene trees and species trees can truly differ due to well-known evolutionary processes like gene duplication and loss, lateral gene transfer or incomplete lineage sorting. Different species tree reconstruction methods have been developed to take this incongruence into account, which can be divided grossly into supertree and supermatrix approaches. Here, we introduce a new Bayesian hierarchical model that we have recently developed and implemented in the program Guenomu, that considers multiple sources of gene tree/species tree disagreement. Guenomu takes as input the posterior distributions of unrooted gene tree topologies for multiple gene families, in order to estimate the posterior distribution of rooted species tree topologies.


2020 ◽  
Vol 70 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Paul M Hime ◽  
Alan R Lemmon ◽  
Emily C Moriarty Lemmon ◽  
Elizabeth Prendini ◽  
Jeremy M Brown ◽  
...  

Abstract Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree–species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree–species tree discordance; genomics; information theory.]


2015 ◽  
Author(s):  
Diego Mallo ◽  
Leonardo de Oliveira Martins ◽  
David Posada

We present here a fast and flexible software–SimPhy–for the simulation of multiple gene families evolving under incomplete lineage sorting, gene duplication and loss, horizontal gene transfer—all three potentially leading to the species tree/gene tree discordance—and gene conversion. SimPhy implements a hierarchical phylogenetic model in which the evolution of species, locus and gene trees is governed by global and local parameters (e.g., genome-wide, species-specific, locus-specific), that can be fixed or be sampled from a priori statistical distributions. SimPhy also incorporates comprehensive models of substitution rate variation among lineages (uncorrelated relaxed clocks) and the capability of simulating partitioned nucleotide, codon and protein multilocus sequence alignments under a plethora of substitution models using the program INDELible. We validate SimPhy's output using theoretical expectations and other programs, and show that it scales extremely well with complex models and/or large trees, being an order of magnitude faster than the most similar program (DLCoal-Sim). In addition, we demonstrate how SimPhy can be useful to understand interactions among different evolutionary processes, conducting a simulation study to characterize the systematic overestimation of the duplication time when using standard reconciliation methods. SimPhy is available at https://github.com/adamallo/SimPhy, where users can find the source code, pre-compiled executables, a detailed manual and example cases.


2019 ◽  
Author(s):  
Peng Du ◽  
Huw A. Ogilvie ◽  
Luay Nakhleh

AbstractStatistical methods were recently introduced for inferring phylogenetic networks under the multispecies network coalescent, thus accounting for both reticulation and incomplete lineage sorting. Two evolutionary processes that are ubiquitous across all three domains of life, but are not accounted for by those methods, are gene duplication and loss (GDL).In this work, we devise a three-piece model—phylogenetic network, locus network, and gene tree—that unifies all the aforementioned processes into a single model of how genes evolve in the presence of ILS, GDL, and introgression within the branches of a phylogenetic network. To illustrate the power of this model, we develop an algorithm for estimating the parameters of a phylogenetic network topology under this unified model. The algorithm consists of a set of moves that allow for stochastic search through the parameter space. The challenges with developing such moves stem from the intricate dependencies among the three pieces of the model. We demonstrate the application of the model and the accuracy of the algorithm on simulated as well as biological data.Our work adds to the biologist’s toolbox of methods for phylogenomic inference by accounting for more complex evolutionary processes.


2020 ◽  
Author(s):  
Liming Cai ◽  
Zhenxiang Xi ◽  
Emily Moriarty Lemmon ◽  
Alan R Lemmon ◽  
Austin Mast ◽  
...  

Abstract The genomic revolution offers renewed hope of resolving rapid radiations in the Tree of Life. The development of the multispecies coalescent (MSC) model and improved gene tree estimation methods can better accommodate gene tree heterogeneity caused by incomplete lineage sorting (ILS) and gene tree estimation error stemming from the short internal branches. However, the relative influence of these factors in species tree inference is not well understood. Using anchored hybrid enrichment, we generated a data set including 423 single-copy loci from 64 taxa representing 39 families to infer the species tree of the flowering plant order Malpighiales. This order includes nine of the top ten most unstable nodes in angiosperms, which have been hypothesized to arise from the rapid radiation during the Cretaceous. Here, we show that coalescent-based methods do not resolve the backbone of Malpighiales and concatenation methods yield inconsistent estimations, providing evidence that gene tree heterogeneity is high in this clade. Despite high levels of ILS and gene tree estimation error, our simulations demonstrate that these two factors alone are insufficient to explain the lack of resolution in this order. To explore this further, we examined triplet frequencies among empirical gene trees and discovered some of them deviated significantly from those attributed to ILS and estimation error, suggesting gene flow as an additional and previously unappreciated phenomenon promoting gene tree variation in Malpighiales. Finally, we applied a novel method to quantify the relative contribution of these three primary sources of gene tree heterogeneity and demonstrated that ILS, gene tree estimation error, and gene flow contributed to 10.0%, 34.8%, and 21.4% of the variation, respectively. Together, our results suggest that a perfect storm of factors likely influence this lack of resolution, and further indicate that recalcitrant phylogenetic relationships like the backbone of Malpighiales may be better represented as phylogenetic networks. Thus, reducing such groups solely to existing models that adhere strictly to bifurcating trees greatly oversimplifies reality, and obscures our ability to more clearly discern the process of evolution.


2020 ◽  
Author(s):  
Fernando Lopes ◽  
Larissa R Oliveira ◽  
Amanda Kessler ◽  
Yago Beux ◽  
Enrique Crespo ◽  
...  

Abstract The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 to 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be non-monophyletic, with California (Z. californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Z. wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family.


2022 ◽  
Vol 12 ◽  
Author(s):  
Martha Kandziora ◽  
Petr Sklenář ◽  
Filip Kolář ◽  
Roswitha Schmickl

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.


2017 ◽  
Author(s):  
Meng Wu ◽  
Jamie L. Kostyun ◽  
Matthew W. Hahn ◽  
Leonie Moyle

ABSTRACTPhylogenetic analyses of trait evolution can provide insight into the evolutionary processes that initiate and drive phenotypic diversification. However, recent phylogenomic studies have revealed extensive gene tree-species tree discordance, which can lead to incorrect inferences of trait evolution if only a single species tree is used for analysis. This phenomenon—dubbed “hemiplasy”—is particularly important to consider during analyses of character evolution in rapidly radiating groups, where discordance is widespread. Here we generate whole-transcriptome data for a phylogenetic analysis of 14 species in the plant genus Jaltomata (the sister clade to Solanum), which has experienced rapid, recent trait evolution, including in fruit and nectar color, and flower size and shape. Consistent with other radiations, we find evidence for rampant gene tree discordance due to incomplete lineage sorting (ILS) and several introgression events among the well-supported subclades. Since both ILS and introgression increase the probability of hemiplasy, we perform several analyses that take discordance into account while identifying genes that might contribute to phenotypic evolution. Despite discordance, the history of fruit color evolution in Jaltomata can be inferred with high confidence, and we find evidence of de novo adaptive evolution at individual genes associated with fruit color variation. In contrast, hemiplasy appears to strongly affect inferences about floral character transitions in Jaltomata, and we identify candidate loci that could arise either from multiple lineage-specific substitutions or standing ancestral polymorphisms. Our analysis provides a generalizable example of how to manage discordance when identifying loci associated with trait evolution in a radiating lineage.


AoB Plants ◽  
2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Nannie L Persson ◽  
Ingrid Toresen ◽  
Heidi Lie Andersen ◽  
Jenny E E Smedmark ◽  
Torsten Eriksson

Abstract The genus Potentilla (Rosaceae) has been subjected to several phylogenetic studies, but resolving its evolutionary history has proven challenging. Previous analyses recovered six, informally named, groups: the Argentea, Ivesioid, Fragarioides, Reptans, Alba and Anserina clades, but the relationships among some of these clades differ between data sets. The Reptans clade, which includes the type species of Potentilla, has been noticed to shift position between plastid and nuclear ribosomal data sets. We studied this incongruence by analysing four low-copy nuclear markers, in addition to chloroplast and nuclear ribosomal data, with a set of Bayesian phylogenetic and Multispecies Coalescent (MSC) analyses. A selective taxon removal strategy demonstrated that the included representatives from the Fragarioides clade, P. dickinsii and P. fragarioides, were the main sources of the instability seen in the trees. The Fragarioides species showed different relationships in each gene tree, and were only supported as a monophyletic group in a single marker when the Reptans clade was excluded from the analysis. The incongruences could not be explained by allopolyploidy, but rather by homoploid hybridization, incomplete lineage sorting or taxon sampling effects. When P. dickinsii and P. fragarioides were removed from the data set, a fully resolved, supported backbone phylogeny of Potentilla was obtained in the MSC analysis. Additionally, indications of autopolyploid origins of the Reptans and Ivesioid clades were discovered in the low-copy gene trees.


Sign in / Sign up

Export Citation Format

Share Document