scholarly journals High-throughput pipeline for the de novo viral genome assembly and the identification of minority variants from Next-Generation Sequencing of residual diagnostic samples

2015 ◽  
Author(s):  
T Gallo Cassarino ◽  
D Frampton ◽  
R Sugar ◽  
E Charles ◽  
Z Kozlakidis ◽  
...  

AbstractMotivationThe underlying genomic variation of a large number of pathogenic viruses can give rise to drug resistant mutations resulting in treatment failure. Next generation sequencing (NGS) enables the identification of viral quasi-species and the quantification of minority variants in clinical samples; therefore, it can be of direct benefit by detecting drug resistant mutations and devising optimal treatment strategies for individual patients.ResultsThe ICONIC (InfeCtion respONse through vIrus genomiCs) project has developed an automated, portable and customisable high-throughput computational pipeline to assemble de novo whole viral genomes, either segmented or non-segmented, and quantify minority variants using residual diagnostic samples. The pipeline has been benchmarked on a dedicated High-Performance Computing cluster using paired-end reads from RSV and Influenza clinical samples. The median length of generated genomes was 96% for the RSV dataset and 100% for each Influenza segment. The analysis of each set lasted less than 12 hours; each sample took around 3 hours and required a maximum memory of 10 GB. The pipeline can be easily ported to a dedicated server or cluster through either an installation script or a docker image. As it enables the subtyping of viral samples and the detection of relevant drug resistance mutations within three days of sample collection, our pipeline could operate within existing clinical reporting time frames and potentially be used as a decision support tool towards more effective personalised patient treatments.AvailabilityThe software and its documentation are available from https://github.com/ICONIC-UCL/[email protected], [email protected] informationSupplementary data are available at Briefings in Bioinformatics online.

2021 ◽  
Author(s):  
Nikhil Shri Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Zachary Petty ◽  
Jiani Chen ◽  
...  

Background: In the current phase of the COVID-19 pandemic, we are facing two serious public health challenges that include deficits in SARS-CoV-2 variant monitoring and neglection of other co-circulation respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak are required to understand the transmission of the virus amongst seemingly unrelated cases and provide critical epidemiological information. To address these challenges, we evaluated a new high-throughput next-generation sequencing (NGS) panel that includes 40 viral pathogens to analyze viral subtypes, mutational variants of SARS-CoV-2, model to understand the spread of the virus in the state of Georgia, USA, and to assess other circulating viruses in the same population. Methods This study evaluated a total of 522 samples that included 483 patient samples and 42 synthetic positive control materials. The performance metrics were calculated for both clinical and reference control samples by comparing detection results with the RT-PCR assay. The limit of detection (LoD) studies were conducted as per the FDA guidelines. Inference and visualization of the phylogeny of the SARS-CoV-2 sequences were performed through the Nextstrain Command-Line Interface (CLI) tool, utilizing the associated augur and auspice toolkits. Result The performance metric was calculated using both the clinical samples and the reference control with a PPA, NPA, and accuracy of 95.98%, 85.96%, and 94.4%, respectively. The LoD was determined to be 10 copies/ml with all 25 replicates detected across two different runs. The clade for pangolin lineage B contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF 3a and, S84L in ORF8 covarying with the D614G spike protein mutation were found to be prevalent in the early pandemic in Georgia, USA. Isolates from the same county formed paraphyletic groups in our analysis, which indicated virus transmission between counties. Conclusion The study demonstrates the clinical utility of the NGS panel to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats, models that provide insights into viral transmission patterns and predict transmission/ resurgence of regional outbreaks and provide critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden.


2020 ◽  
Vol 9 (5-6) ◽  
pp. 773-778
Author(s):  
E. Sodja ◽  
N. Toplak ◽  
S. Koren ◽  
M. Kovač ◽  
S. Truden ◽  
...  

Drug resistant tuberculosis (TB), especially multidrug (MDR) and extensively drug-resistant (XDR) TB, is still a serious problem in global TB control. Slovenia and North Macedonia are low-incidence countries with TB incidence rates of 5.4 and 10.4 in 2017, respectively. In both countries, the percentage of drug resistant TB is very low with sporadic cases of MDR-TB. However, global burden of drug-resistant TB continues to increase imposing huge impact on public health systems and strongly stimulating the detection of gene variants related with drug resistance in TB. Next-generation sequencing (NGS) can provide comprehensive analysis of gene variants linked to drug resistance in Mycobacterium tuberculosis. Therefore, the aim of our study was to examine the feasibility of a full-length gene analysis for the drug resistance related genes (inhA, katG, rpoB, embB) using Ion Torrent technology and to compare the NGS results with those obtained from conventional phenotypic drug susceptibility testing (DST) in TB isolates. Between 1996 and 2017, we retrospectively selected 56 TB strains from our National mycobacterial culture collection. Of those, 33 TB isolates from Slovenian patients were isolated from various clinical samples and subjected to phenotypic DST testing in Laboratory for Mycobacteria (University Clinic Golnik, Slovenia). The remaining 23 TB isolates were isolated from Macedonian patients and sent to our laboratory for assistance in phenotypic DST testing. TB strains included were either mono-, poly- or multidrug resistant. For control purposes, we also randomly selected five TB strains susceptible to first-line anti-TB drugs. High concordance between genetic (Ion Torrent technology) and standard phenotypic DST testing for isoniazid, rifampicin and ethambutol was observed, with percent of agreement of 77%, 93.4% and 93.3%, sensitivities of 68.2%, 100% and 100%, and specificities of 100%, 80% and 88.2%, respectively. In conclusion, the genotypic DST using Ion Torrent semiconductor NGS successfully predicted drug resistance with significant shortening of time needed to obtain the resistance profiles from several weeks to just a few days.


2020 ◽  
Vol 58 (10) ◽  
Author(s):  
Andrea M. Cabibbe ◽  
Andrea Spitaleri ◽  
Simone Battaglia ◽  
Rebecca E. Colman ◽  
Anita Suresh ◽  
...  

ABSTRACT Targeted next-generation sequencing (tNGS) has emerged as a comprehensive alternative to existing methods for drug susceptibility testing (DST) of Mycobacterium tuberculosis from patient sputum samples for clinical diagnosis of drug-resistant tuberculosis (DR-TB). However, the complexity of sequencing platforms has limited their uptake in low-resource settings. The goal of this study was to evaluate the use of the tNGS-based DST solution Genoscreen Deeplex Myc-TB, for use on the compact, low-cost Oxford Nanopore Technologies MinION sequencer. One hundred four DNA samples extracted from smear-positive sputum sediments, previously sequenced using the Deeplex assay on an Illumina MiniSeq, were resequenced on MinION after applying a custom library preparation. MinION read quality, mapping statistics, and variant calling were computed using an in-house pipeline and compared to the reference MiniSeq data. The average percentage of MinION reads mapped to an H37RV reference genome was 90.8%, versus 99.5% on MiniSeq. The mean depths of coverage were 4,151× and 4,177× on MinION and MiniSeq, respectively, with heterogeneous distribution across targeted genes. Composite reference coverage breadth was >99% for both platforms. We observed full concordance between technologies in reporting the clinically relevant drug-resistant markers, including full gene deletions. In conclusion, we demonstrated that the workflow and sequencing data obtained from Deeplex on MinION are comparable to those for the MiniSeq, despite the higher raw error rates on MinION, with the added advantage of MinION’s portability, versatility, and low capital costs. Targeted NGS on MinION is a promising DST solution for rapidly providing clinically relevant data to manage complex DR-TB cases.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


Author(s):  
Takuya Shimizu ◽  
Tadakazu Kondo ◽  
Yasuhito Nannya ◽  
Mizuki Watanabe ◽  
Toshio Kitawaki ◽  
...  

2014 ◽  
Vol 12 (S1) ◽  
pp. S83-S86 ◽  
Author(s):  
Yul-Kyun Ahn ◽  
Swati Tripathi ◽  
Young-Il Cho ◽  
Jeong-Ho Kim ◽  
Hye-Eun Lee ◽  
...  

Next-generation sequencing technique has been known as a useful tool for de novo transcriptome assembly, functional annotation of genes and identification of molecular markers. This study was carried out to mine molecular markers from de novo assembled transcriptomes of four chilli pepper varieties, the highly pungent ‘Saengryeg 211’ and non-pungent ‘Saengryeg 213’ and variably pigmented ‘Mandarin’ and ‘Blackcluster’. Pyrosequencing of the complementary DNA library resulted in 361,671, 274,269, 279,221, and 316,357 raw reads, which were assembled in 23,607, 19,894, 18,340 and 20,357 contigs, for the four varieties, respectively. Detailed sequence variant analysis identified numerous potential single-nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) for all the varieties for which the primers were designed. The transcriptome information and SNP/SSR markers generated in this study provide valuable resources for high-density molecular genetic mapping in chilli pepper and Quantitative trait loci analysis related to fruit qualities. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.


2012 ◽  
Vol 37 (5) ◽  
pp. 811-820 ◽  
Author(s):  
Rajeev K Varshney ◽  
Himabindu Kudapa ◽  
Manish Roorkiwal ◽  
Mahendar Thudi ◽  
Manish K Pandey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document