scholarly journals Integration of mobile sequencers in an academic classroom

2015 ◽  
Author(s):  
Sophie Zaaijer ◽  
Yaniv Erlich

The rapid development of DNA sequencing technologies creates new educational opportunities for hands-on training. We report our experience in integrating handheld DNA sequencers (Oxford Nanopore Technologies MinION) as part of an academic class. This manuscript describes lessons learned to facilitate successful integration and provides educational resources for the benefit of the community.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 858 ◽  
Author(s):  
Krehenwinkel ◽  
Pomerantz ◽  
Prost

We live in an era of unprecedented biodiversity loss, affecting the taxonomic composition of ecosystems worldwide. The immense task of quantifying human imprints on global ecosystems has been greatly simplified by developments in high-throughput DNA sequencing technology (HTS). Approaches like DNA metabarcoding enable the study of biological communities at unparalleled detail. However, current protocols for HTS-based biodiversity exploration have several drawbacks. They are usually based on short sequences, with limited taxonomic and phylogenetic information content. Access to expensive HTS technology is often restricted in developing countries. Ecosystems of particular conservation priority are often remote and hard to access, requiring extensive time from field collection to laboratory processing of specimens. The advent of inexpensive mobile laboratory and DNA sequencing technologies show great promise to facilitate monitoring projects in biodiversity hot-spots around the world. Recent attention has been given to portable DNA sequencing studies related to infectious organisms, such as bacteria and viruses, yet relatively few studies have focused on applying these tools to Eukaryotes, such as plants and animals. Here, we outline the current state of genetic biodiversity monitoring of higher Eukaryotes using Oxford Nanopore Technology’s MinION portable sequencing platform, as well as summarize areas of recent development.



2019 ◽  
Vol 21 (1) ◽  
pp. 298 ◽  
Author(s):  
Raf Winand ◽  
Bert Bogaerts ◽  
Stefan Hoffman ◽  
Loïc Lefevre ◽  
Maud Delvoye ◽  
...  

Rapid, accurate bacterial identification in biological samples is an important task for microbiology laboratories, for which 16S rRNA gene Sanger sequencing of cultured isolates is frequently used. In contrast, next-generation sequencing does not require intermediate culturing steps and can be directly applied on communities, but its performance has not been extensively evaluated. We present a comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies (ONT)) generation sequencing technologies for 16S targeted genomics using a well-characterized reference sample. Different 16S gene regions were amplified and sequenced using the Illumina MiSeq, and analyzed with Mothur. Correct classification was variable, depending on the region amplified. Using a majority vote over all regions, most false positives could be eliminated at the genus level but not the species level. Alternatively, the entire 16S gene was amplified and sequenced using the ONT MinION, and analyzed with Mothur, EPI2ME, and GraphMap. Although >99% of reads were correctly classified at the genus level, up to ≈40% were misclassified at the species level. Both technologies, therefore, allow reliable identification of bacterial genera, but can potentially misguide identification of bacterial species, and constitute viable alternatives to Sanger sequencing for rapid analysis of mixed samples without requiring any culturing steps.



F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 227 ◽  
Author(s):  
Scott Gigante

Oxford Nanopore Technologies' (ONT's) MinION and PromethION long-read sequencing technologies are emerging as genuine alternatives to established Next-Generation Sequencing technologies. A combination of the highly redundant file format and a rapid increase in data generation have created a significant problem both for immediate data storage on MinION-capable laptops, and for long-term storage on lab data servers. We developed Picopore, a software suite offering three methods of compression. Picopore's lossless and deep lossless methods provide a 25% and 44% average reduction in size, respectively, without removing any data from the files. Picopore's raw method provides an 88% average reduction in size, while retaining biologically relevant data for the end-user. All methods have the capacity to run in real-time in parallel to a sequencing run, reducing demand for both immediate and long-term storage space.



2021 ◽  
Author(s):  
Arang Rhie ◽  
Ann Mc Cartney ◽  
Kishwar Shafin ◽  
Michael Alonge ◽  
Andrey Bzikadze ◽  
...  

Abstract Advances in long-read sequencing technologies and genome assembly methods have enabled the recent completion of the first Telomere-to-Telomere (T2T) human genome assembly, which resolves complex segmental duplications and large tandem repeats, including centromeric satellite arrays in a complete hydatidiform mole (CHM13). Though derived from highly accurate sequencing, evaluation revealed that the initial T2T draft assembly had evidence of small errors and structural misassemblies. To correct these errors, we designed a novel repeat-aware polishing strategy that made accurate assembly corrections in large repeats without overcorrection, ultimately fixing 51% of the existing errors and improving the assembly QV to 73.9. By comparing our results to standard automated polishing tools, we outline common polishing errors and offer practical suggestions for genome projects with limited resources. We also show how sequencing biases in both PacBio HiFi and Oxford Nanopore Technologies reads cause signature assembly errors that can be corrected with a diverse panel of sequencing technologies



2019 ◽  
Author(s):  
Rachael E. Workman ◽  
Alison D. Tang ◽  
Paul S. Tang ◽  
Miten Jain ◽  
John R. Tyson ◽  
...  

Abstract High throughput cDNA sequencing technologies have dramatically advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and because modifications are not carried forward in cDNA. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies (ONT). Our study focused on poly(A) RNA from the human cell line GM12878, generating 9.9 million aligned sequence reads. These native RNA reads had an aligned N50 length of 1294 bases, and a maximum aligned length of over 21,000 bases. A total of 78,199 high-confidence isoforms were identified by combining long nanopore reads with short higher accuracy Illumina reads. We describe methods for extracting intact RNA, poly-A selection, cDNA conversion for a portion of sample, and library preparation for both direct RNA and cDNA libraries.



GigaScience ◽  
2020 ◽  
Vol 9 (9) ◽  
Author(s):  
Gina M Pham ◽  
John P Hamilton ◽  
Joshua C Wood ◽  
Joseph T Burke ◽  
Hainan Zhao ◽  
...  

Abstract Background Worldwide, the cultivated potato, Solanum tuberosum L., is the No. 1 vegetable crop and a critical food security crop. The genome sequence of DM1–3 516 R44, a doubled monoploid clone of S. tuberosum Group Phureja, was published in 2011 using a whole-genome shotgun sequencing approach with short-read sequence data. Current advanced sequencing technologies now permit generation of near-complete, high-quality chromosome-scale genome assemblies at minimal cost. Findings Here, we present an updated version of the DM1–3 516 R44 genome sequence (v6.1) using Oxford Nanopore Technologies long reads coupled with proximity-by-ligation scaffolding (Hi-C), yielding a chromosome-scale assembly. The new (v6.1) assembly represents 741.6 Mb of sequence (87.8%) of the estimated 844 Mb genome, of which 741.5 Mb is non-gapped with 731.2 Mb anchored to the 12 chromosomes. Use of Oxford Nanopore Technologies full-length complementary DNA sequencing enabled annotation of 32,917 high-confidence protein-coding genes encoding 44,851 gene models that had a significantly improved representation of conserved orthologs compared with the previous annotation. The new assembly has improved contiguity with a 595-fold increase in N50 contig size, 99% reduction in the number of contigs, a 44-fold increase in N50 scaffold size, and an LTR Assembly Index score of 13.56, placing it in the category of reference genome quality. The improved assembly also permitted annotation of the centromeres via alignment to sequencing reads derived from CENH3 nucleosomes. Conclusions Access to advanced sequencing technologies and improved software permitted generation of a high-quality, long-read, chromosome-scale assembly and improved annotation dataset for the reference genotype of potato that will facilitate research aimed at improving agronomic traits and understanding genome evolution.



2020 ◽  
Author(s):  
Dandan Lang ◽  
Shilai Zhang ◽  
Pingping Ren ◽  
Fan Liang ◽  
Zongyi Sun ◽  
...  

AbstractThe availability of reference genomes has revolutionized the study of biology. Multiple competing technologies have been developed to improve the quality and robustness of genome assemblies during the last decade. The two widely-used long read sequencing providers – Pacbio (PB) and Oxford Nanopore Technologies (ONT) – have recently updated their platforms: PB enable high throughput HiFi reads with base-level resolution with >99% and ONT generated reads as long as 2 Mb. We applied the two up-to-date platforms to one single rice individual, and then compared the two assemblies to investigate the advantages and limitations of each. The results showed that ONT ultralong reads delivered higher contiguity producing a total of 18 contigs of which 10 were assembled into a single chromosome compared to that of 394 contigs and three chromosome-level contigs for the PB assembly. The ONT ultralong reads also prevented assembly errors caused by long repetitive regions for which we observed a total 44 genes of false redundancies and 10 genes of false losses in the PB assembly leading to over/under-estimations of the gene families in those long repetitive regions. We also noted that the PB HiFi reads generated assemblies with considerably less errors at the level of single nucleotide and small InDels than that of the ONT assembly which generated an average 1.06 errors per Kb assembly and finally engendered 1,475 incorrect gene annotations via altered or truncated protein predictions.



2017 ◽  
Vol 2 ◽  
pp. 23 ◽  
Author(s):  
Jean-Michel Carter ◽  
Shobbir Hussain

Background: The ability to obtain long read lengths during DNA sequencing has several potentially important practical applications. Especially long read lengths have been reported using the Nanopore sequencing method, currently commercially available from Oxford Nanopore Technologies (ONT). However, early reports have demonstrated only limited levels of combined throughput and sequence accuracy. Recently, ONT released a new CsgG pore sequencing system as well as a 250b/s translocation chemistry with potential for improvements. Methods: We made use of such components on ONTs miniature ‘MinION’ device and sequenced native genomic DNA obtained from the near haploid cancer cell line HAP1. Analysis of our data was performed utilising recently described computational tools tailored for nanopore/long-read sequencing outputs, and here we present our key findings. Results: From a single sequencing run, we obtained ~240,000 high-quality mapped reads, comprising a total of ~2.3 billion bases. A mean read length of 9.6kb and an N50 of ~17kb was achieved, while sequences mapped to reference with a mean identity of 85%. Notably, we obtained ~68X coverage of the mitochondrial genome and were able to achieve a mean consensus identity of 99.8% for sequenced mtDNA reads. Conclusions: With improved sequencing chemistries already released and higher-throughput instruments in the pipeline, this early study suggests that ONT CsgG-based sequencing may be a useful option for potential practical long-read applications.



mSystems ◽  
2021 ◽  
Author(s):  
Christoph Ammer-Herrmenau ◽  
Nina Pfisterer ◽  
Tim van den Berg ◽  
Ivana Gavrilova ◽  
Ahmad Amanzada ◽  
...  

Advanced microbiome analysis relies on sequencing of short DNA fragments from microorganisms like bacteria, fungi, and viruses. More recently, long fragment DNA sequencing of 3rd generation sequencing has gained increasing importance and can be rapidly conducted within a few hours due to its potential real-time sequencing.



2018 ◽  
Vol 1 (4) ◽  
pp. e00086
Author(s):  
S.P. Radko ◽  
L.K. Kurbatov ◽  
K.G. Ptitsyn ◽  
Y.Y. Kiseleva ◽  
E.A. Ponomarenko ◽  
...  

Transcriptome profiling is widely employed to analyze transcriptome dynamics when studying various biological processes at the cell and tissue levels. Unlike the second generation sequencers, which sequence relatively short fragments of nucleic acids, the third generation DNA/RNA sequencers developed by biotechnology companies “PacBio” and “Oxford Nanopore Technologies” allow one to sequence transcripts as single molecules and may be considered as potential molecular counters capable to measure the number of copies of each transcript with high throughput, sensitivity, and specificity. In the present review, the features of single molecule sequencing technologies offered by “PacBio” and “Oxford Nanopore Technologies” are considered alongside with their utility for transcriptome analysis, including the analysis of transcript isoforms. The prospects and limitations of the single molecule sequencing technology in application to quantitative transcriptome profiling are also discussed.



Sign in / Sign up

Export Citation Format

Share Document