scholarly journals Integrating Molecular QTL Data into Genome-wide Genetic Association Analysis: Probabilistic Assessment of Enrichment and Colocalization

2016 ◽  
Author(s):  
Xiaoquan Wen ◽  
Roger Pique-Regi ◽  
Francesca Luca

AbstractWe propose a novel statistical framework for integrating genetic data from molecular quantitative trait loci (QTL) mapping into genome-wide genetic association analysis of complex traits, with the primary objectives of quantitatively assessing the enrichment of the molecular QTLs in complex trait-associated genetic variants and the colocalizations of the two types of association signals. We introduce a natural Bayesian hierarchical model that treats the latent association status of molecular QTLs as SNP-level annotations for candidate SNPs for complex traits. We detail a computational procedure to seamlessly perform enrichment, fine-mapping and colocalization analyses, which is a distinct feature compared to the existing colocalization analysis procedures in the literature. The proposed approach is computationally efficient and requires only summary-level statistics. We evaluate and demonstrate the proposed computational approach through extensive simulation studies and the analysis of blood lipid data and the whole blood eQTL data from the GTEx project. In addition, a useful utility from our proposed method enables the computation of expected colocalization signals, which is analogous to the power calculation in genetic association studies. Using this utility, we further illustrate the importance of enrichment analysis on the ability of discovering colocalized signals and the potential limitations of currently available molecular QTL data.

2019 ◽  
Author(s):  
Weimiao Wu ◽  
Zhong Wang ◽  
Ke Xu ◽  
Xinyu Zhang ◽  
Amei Amei ◽  
...  

SUMMARYLongitudinal phenotypes have been increasingly available in genome-wide association studies (GWAS) and electronic health record-based studies for identification of genetic variants that influence complex traits over time. For longitudinal binary data, there remain significant challenges in gene mapping, including misspecification of the model for the phenotype distribution due to ascertainment. Here, we propose L-BRAT, a retrospective, generalized estimating equations-based method for genetic association analysis of longitudinal binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-based association test. Both tests are retrospective score approaches in which genotypes are treated as random conditional on phenotype and covariates. They allow both static and time-varying covariates to be included in the analysis. Through simulations, we illustrated that retrospective association tests are robust to ascertainment and other types of phenotype model misspecification, and gain power over previous association methods. We applied L-BRAT and RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal guidance signaling pathways. Lastly, we replicated important pathways in an independent cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect important loci and pathways in a genome scan and to provide insights into genetic architecture of cocaine use.


2021 ◽  
Author(s):  
Nadezhda M Belonogova ◽  
Gulnara R Svishcheva ◽  
Anatoly V Kirichenko ◽  
Yakov A Tsepilov ◽  
Tatiana I Axenovich

Gene-based association analysis is an effective gene mapping tool. Many gene-based methods have been proposed recently. However, their power depends on the underlying genetic architecture, which is rarely known in complex traits, and so it is likely that a combination of such methods could serve as a universal approach. Several frameworks combining different gene-based methods have been developed. However, they all imply a fixed set of methods, weights and functional annotations. Moreover, most of them use individual phenotypes and genotypes as input data. Here, we introduce sumSTAAR, a framework for gene-based association analysis using summary statistics obtained from genome-wide association studies (GWAS). It is an extended and modified version of STAAR framework proposed by Li and colleagues in 2020. The sumSTAAR framework offers a wider range of gene-based methods to combine. It allows the user to arbitrarily define a set of these methods, weighting functions and probabilities of genetic variants being causal. The methods used in the framework were adapted to analyse genes with large number of SNPs to decrease the running time. The framework includes the polygene pruning procedure to guard against the influence of the strong GWAS signals outside the gene. We also present new improved matrices of correlations between the genotypes of variants within genes. These matrices estimated on a sample of 265,000 individuals are a state-of-the-art replacement of widely used matrices based on the 1000 Genomes Project data.


2018 ◽  
Author(s):  
Yeji Lee ◽  
Francesca Luca ◽  
Roger Pique-Regi ◽  
Xiaoquan Wen

AbstractMulti-SNP genetic association analysis has become increasingly important in analyzing data from genome-wide association studies (GWASs) and molecular quantitative trait loci (QTL) mapping studies. In this paper, we propose novel computational approaches to address two outstanding issues in Bayesian multi-SNP genetic association analysis: namely, the control of false positive discoveries of identified association signals and the maximization of the efficiency of statistical inference by utilizing summary statistics. Quantifying the strength and uncertainty of genetic association signals has been a long-standing theme in statistical genetics. However, there is a lack of formal statistical procedures that can rigorously control type I errors in multi-SNP analysis. We propose an intuitive hierarchical representation of genetic association signals based on Bayesian posterior probabilities, which subsequently enables rigorous control of false discovery rate (FDR) and construction of Bayesian credible sets. From the perspective of statistical data reduction, we examine the computational approaches of multi-SNP analysis using z-statistics from single-SNP association testing and conclude that they likely yield conservative results comparing to using individual-level data. Built on this result, we propose a set of sufficient summary statistics that can lead to identical results as individual-level data without sacrificing power. Our novel computational approaches are implemented in the software package, DAP-G (https://github.com/xqwen/dap), which applies to both GWASs and genome-wide molecular QTL mapping studies. It is highly computationally efficient and approximately 20 times faster than the state-of-the-art implementation of Bayesian multi-SNP analysis software. We demonstrate the proposed computational approaches using carefully constructed simulation studies and illustrate a complete workflow for multi-SNP analysis of cis expression quantitative trait loci using the whole blood data from the GTEx project.


2017 ◽  
Author(s):  
Xiang Zhu ◽  
Matthew Stephens

Genome-wide association studies (GWAS) aim to identify genetic factors that are associated with complex traits. Standard analyses test individual genetic variants, one at a time, for association with a trait. However, variant-level associations are hard to identify (because of small effects) and can be difficult to interpret biologically. “Enrichment analyses” help address both these problems by focusing on sets of biologically-related variants. Here we introduce a new model-based enrichment analysis method that requires only GWAS summary statistics, and has several advantages over existing methods. Applying this method to interrogate 3,913 biological pathways and 113 tissue-based gene sets in 31 human phenotypes identifies many previously-unreported enrichments. These include enrichments of the endochondral ossification pathway for adult height, the NFAT-dependent transcription pathway for rheumatoid arthritis, brain-related genes for coronary artery disease, and liver-related genes for late-onset Alzheimer’s disease. A key feature of our method is that inferred enrichments automatically help identify new trait-associated genes. For example, accounting for enrichment in lipid transport genes yields strong evidence for association between MTTP and low-density lipoprotein levels, whereas conventional analyses of the same data found no significant variants near this gene.


2007 ◽  
Vol 16 (20) ◽  
pp. 2494-2505 ◽  
Author(s):  
Yasuhito Nannya ◽  
Kenjiro Taura ◽  
Mineo Kurokawa ◽  
Shigeru Chiba ◽  
Seishi Ogawa

2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


Sign in / Sign up

Export Citation Format

Share Document