scholarly journals Scalable latent-factor models applied to single-cell RNA-seq data separate biological drivers from confounding effects

2016 ◽  
Author(s):  
Florian Buettner ◽  
Naruemon Pratanwanich ◽  
John C. Marioni ◽  
Oliver Stegle

Single-cell RNA-sequencing (scRNA-seq) allows heterogeneity in gene expression levels to be studied in large populations of cells. Such heterogeneity can arise from both technical and biological factors, thus making decomposing sources of variation extremely difficult. We here describe a computationally efficient model that uses prior pathway annotation to guide inference of the biological drivers underpinning the heterogeneity. Moreover, we jointly update and improve gene set annotation and infer factors explaining variability that fall outside the existing annotation. We validate our method using simulations, which demonstrate both its accuracy and its ability to scale to large datasets with up to 100,000 cells. Moreover, through applications to real data we show that our model can robustly decompose scRNA-seq datasets into interpretable components and facilitate the identification of novel sub-populations.

2019 ◽  
Author(s):  
Yuanhua Huang ◽  
Davis J McCarthy ◽  
Oliver Stegle

AbstractThe joint analysis of multiple samples using single-cell RNA-seq is a promising experimental design, offering both increased throughput while allowing to account for batch variation. To achieve multi-sample designs, genetic variants that segregate between the samples in the pool have been proposed as natural barcodes for cell demultiplexing. Existing demultiplexing strategies rely on access to complete genotype data from the pooled samples, which greatly limits the applicability of such methods, in particular when genetic variation is not the primary object of study. To address this, we here present Vireo, a computationally efficient Bayesian model to demultiplex single-cell data from pooled experimental designs. Uniquely, our model can be applied in settings when only partial or no genotype information is available. Using simulations based on synthetic mixtures and results on real data, we demonstrate the robustness of our model and illustrate the utility of multi-sample experimental designs for common expression analyses.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuanhua Huang ◽  
Davis J. McCarthy ◽  
Oliver Stegle

AbstractMultiplexed single-cell RNA-seq analysis of multiple samples using pooling is a promising experimental design, offering increased throughput while allowing to overcome batch variation. To reconstruct the sample identify of each cell, genetic variants that segregate between the samples in the pool have been proposed as natural barcode for cell demultiplexing. Existing demultiplexing strategies rely on availability of complete genotype data from the pooled samples, which limits the applicability of such methods, in particular when genetic variation is not the primary object of study. To address this, we here present Vireo, a computationally efficient Bayesian model to demultiplex single-cell data from pooled experimental designs. Uniquely, our model can be applied in settings when only partial or no genotype information is available. Using pools based on synthetic mixtures and results on real data, we demonstrate the robustness of Vireo and illustrate the utility of multiplexed experimental designs for common expression analyses.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
David DeTomaso ◽  
Matthew G. Jones ◽  
Meena Subramaniam ◽  
Tal Ashuach ◽  
Chun J. Ye ◽  
...  

Abstract We present Vision, a tool for annotating the sources of variation in single cell RNA-seq data in an automated and scalable manner. Vision operates directly on the manifold of cell-cell similarity and employs a flexible annotation approach that can operate either with or without preconceived stratification of the cells into groups or along a continuum. We demonstrate the utility of Vision in several case studies and show that it can derive important sources of cellular variation and link them to experimental meta-data even with relatively homogeneous sets of cells. Vision produces an interactive, low latency and feature rich web-based report that can be easily shared among researchers, thus facilitating data dissemination and collaboration.


2020 ◽  
Author(s):  
Julia Eve Olivieri ◽  
Roozbeh Dehghannasiri ◽  
Julia Salzman

AbstractTo date, the field of single-cell genomics has viewed robust splicing analysis as completely out of reach in droplet-based platforms, preventing biological discovery of single-cell regulated splicing. Here, we introduce a novel, robust, and computationally efficient statistical method, the Splicing Z Score (SZS), to detect differential alternative splicing in single cell RNA-Seq technologies including 10x Chromium. We applied the SZS to primary human cells to discover new regulated, cell type-specific splicing patterns. Illustrating the power of the SZS method, splicing of a small set of genes has high predictive power for tissue compartment in the human lung, and the SZS identifies un-annotated, conserved splicing regulation in the human spermatogenesis. The SZS is a method that can rapidly identify regulated splicing events from single cell data and prioritize genes predicted to have functionally significant splicing programs.


2020 ◽  
Author(s):  
Tao Yang ◽  
Nicole Alessandri-Haber ◽  
Wen Fury ◽  
Michael Schaner ◽  
Robert Breese ◽  
...  

AbstractRNA sequencing technology promises an unprecedented opportunity in learning disease mechanisms and discovering new treatment targets. Recent spatial transcriptomics methods further enable the transcriptome profiling at spatially resolved spots in a tissue section. In controlled experiments, it is often of immense importance to know the cell composition in different samples. Understanding the cell type content in each tissue spot is also crucial to the spatial transcriptome data interpretation. Though single cell RNA-seq has the power to reveal cell type composition and expression heterogeneity in different cells, it remains costly and sometimes infeasible when live cells cannot be obtained or sufficiently dissociated. To computationally resolve the cell composition in RNA-seq data of mixed cells, we present AdRoit, an accurate androbust method to infer transcriptome composition. The method estimates the proportions of each cell type in the compound RNA-seq data using known single cell data of relevant cell types. It uniquely uses an adaptive learning approach to correct the bias gene-wise due to the difference in sequencing techniques. AdRoit also utilizes cell type specific genes while control their cross-sample variability. Our systematic benchmarking, spanning from simple to complex tissues, shows that AdRoit has superior sensitivity and specificity compared to other existing methods. Its performance holds for multiple single cell and compound RNA-seq platforms. In addition, AdRoit is computationally efficient and runs one to two orders of magnitude faster than some of the state-of-the-art methods.


2017 ◽  
Author(s):  
Luke Zappia ◽  
Belinda Phipson ◽  
Alicia Oshlack

AbstractAs single-cell RNA sequencing technologies have rapidly developed, so have analysis methods. Many methods have been tested, developed and validated using simulated datasets. Unfortunately, current simulations are often poorly documented, their similarity to real data is not demonstrated, or reproducible code is not available.Here we present the Splatter Bioconductor package for simple, reproducible and well-documented simulation of single-cell RNA-seq data. Splatter provides an interface to multiple simulation methods including Splat, our own simulation, based on a gamma-Poisson distribution. Splat can simulate single populations of cells, populations with multiple cell types or differentiation paths.


2021 ◽  
Author(s):  
Philipp Weiler ◽  
Koen Van den Berge ◽  
Kelly Street ◽  
Simone Tiberi

Technological developments have led to an explosion of high-throughput single cell data, which are revealing unprecedented perspectives on cell identity. Recently, significant attention has focused on investigating, from single-cell RNA-sequencing (scRNA-seq) data, cellular dynamic processes, such as cell differentiation, cell cycle and cell (de)activation. Trajectory inference methods estimate a trajectory, a collection of differentiation paths of a dynamic system, by ordering cells along the paths of such a dynamic process. While trajectory inference tools typically work with gene expression levels, common scRNA-seq protocols allow the identification and quantification of unspliced pre-mRNAs and mature spliced mRNAs, for each gene. By exploiting the abundance of unspliced and spliced mRNA, one can infer the RNA velocity of individual cells, i.e., the time derivative of the gene expression state of cells. Whereas traditional trajectory inference methods reconstruct cellular dynamics given a population of cells of varying maturity, RNA velocity relies on a dynamical model describing splicing dynamics. Here, we initially discuss conceptual and theoretical aspects of both approaches, then illustrate how they can be combined together, and finally present an example use-case on real data.


2018 ◽  
Author(s):  
Pierre-Cyril Aubin-Frankowski ◽  
Jean-Philippe Vert

AbstractSingle-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulation networks (GRN) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology. In this work we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual data, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.


2020 ◽  
Vol 36 (10) ◽  
pp. 3115-3123 ◽  
Author(s):  
Teng Fei ◽  
Tianwei Yu

Abstract Motivation Batch effect is a frequent challenge in deep sequencing data analysis that can lead to misleading conclusions. Existing methods do not correct batch effects satisfactorily, especially with single-cell RNA sequencing (RNA-seq) data. Results We present scBatch, a numerical algorithm for batch-effect correction on bulk and single-cell RNA-seq data with emphasis on improving both clustering and gene differential expression analysis. scBatch is not restricted by assumptions on the mechanism of batch-effect generation. As shown in simulations and real data analyses, scBatch outperforms benchmark batch-effect correction methods. Availability and implementation The R package is available at github.com/tengfei-emory/scBatch. The code to generate results and figures in this article is available at github.com/tengfei-emory/scBatch-paper-scripts. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Giacomo Baruzzo ◽  
Ilaria Patuzzi ◽  
Barbara Di Camillo

Abstract Motivation Single cell RNA-seq (scRNA-seq) count data show many differences compared with bulk RNA-seq count data, making the application of many RNA-seq pre-processing/analysis methods not straightforward or even inappropriate. For this reason, the development of new methods for handling scRNA-seq count data is currently one of the most active research fields in bioinformatics. To help the development of such new methods, the availability of simulated data could play a pivotal role. However, only few scRNA-seq count data simulators are available, often showing poor or not demonstrated similarity with real data. Results In this article we present SPARSim, a scRNA-seq count data simulator based on a Gamma-Multivariate Hypergeometric model. We demonstrate that SPARSim allows to generate count data that resemble real data in terms of count intensity, variability and sparsity, performing comparably or better than one of the most used scRNA-seq simulator, Splat. In particular, SPARSim simulated count matrices well resemble the distribution of zeros across different expression intensities observed in real count data. Availability and implementation SPARSim R package is freely available at http://sysbiobig.dei.unipd.it/? q=SPARSim and at https://gitlab.com/sysbiobig/sparsim. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document