scholarly journals Maximizing ecological and evolutionary insight from bisulfite sequencing data sets

2016 ◽  
Author(s):  
Amanda J. Lea ◽  
Tauras P. Vilgalys ◽  
Paul A.P. Durst ◽  
Jenny Tung

AbstractThe role of DNA methylation in development, divergence, and the response to environmental stimuli is of substantial interest in ecology and evolutionary biology. Measuring genome-wide DNA methylation is increasingly feasible using sodium bisulfite sequencing. Here, we analyze simulated and published data sets to demonstrate how effect size, kinship/population structure, taxonomic differences, and cell type heterogeneity influence the power to detect differential methylation in bisulfite sequencing data sets. Our results reveal that the effect sizes typical of evolutionary and ecological studies are modest, and will thus require data sets larger than those currently in common use. Additionally, our findings emphasize that statistical approaches that ignore the properties of bisulfite sequencing data (e.g., its count-based nature) or key sources of variance in natural populations (e.g., population structure or cell type heterogeneity) often produce false negatives or false positives, thus leading to incorrect biological conclusions. Finally, we provide recommendations for handling common issues that arise in bisulfite sequencing analyses and a freely available R Shiny application for simulating and performing power analyses on bisulfite sequencing data. This app, available at www.tung-lab.org/protocols-and-software.html, allows users to explore the effects of sequencing depth, sample size, population structure, and expected effect size, tailored to their own system.

Genetics ◽  
2017 ◽  
Vol 205 (4) ◽  
pp. 1443-1458 ◽  
Author(s):  
Owen J. L. Rackham ◽  
Sarah R. Langley ◽  
Thomas Oates ◽  
Eleni Vradi ◽  
Nathan Harmston ◽  
...  

Leukemia ◽  
2021 ◽  
Author(s):  
Elisabeth R. Wilson ◽  
Nichole M. Helton ◽  
Sharon E. Heath ◽  
Robert S. Fulton ◽  
Jacqueline E. Payton ◽  
...  

AbstractRecurrent mutations in IDH1 or IDH2 in acute myeloid leukemia (AML) are associated with increased DNA methylation, but the genome-wide patterns of this hypermethylation phenotype have not been comprehensively studied in AML samples. We analyzed whole-genome bisulfite sequencing data from 15 primary AML samples with IDH1 or IDH2 mutations, which identified ~4000 focal regions that were uniquely hypermethylated in IDHmut samples vs. normal CD34+ cells and other AMLs. These regions had modest hypermethylation in AMLs with biallelic TET2 mutations, and levels of 5-hydroxymethylation that were diminished in IDH and TET-mutant samples, indicating that this hypermethylation results from inhibition of TET-mediated demethylation. Focal hypermethylation in IDHmut AMLs occurred at regions with low methylation in CD34+ cells, implying that DNA methylation and demethylation are active at these loci. AML samples containing IDH and DNMT3AR882 mutations were significantly less hypermethylated, suggesting that IDHmut-associated hypermethylation is mediated by DNMT3A. IDHmut-specific hypermethylation was highly enriched for enhancers that form direct interactions with genes involved in normal hematopoiesis and AML, including MYC and ETV6. These results suggest that focal hypermethylation in IDH-mutant AML occurs by altering the balance between DNA methylation and demethylation, and that disruption of these pathways at enhancers may contribute to AML pathogenesis.


2014 ◽  
Author(s):  
Sandra Steyaert ◽  
Wim Van Criekinge ◽  
Ayla De Paepe ◽  
Simon Denil ◽  
Klaas Mensaert ◽  
...  

Monoallelic gene expression is typically initiated early in the development of an organism. Dysregulation of monoallelic gene expression has already been linked to several non-Mendelian inherited genetic disorders. In humans, DNA-methylation is deemed to be an important regulator of monoallelic gene expression, but only few examples are known. One important reason is that current, cost-affordable truly genome-wide methods to assess DNA-methylation are based on sequencing post enrichment. Here, we present a new methodology that combines methylomic data from MethylCap-seq with associated SNP profiles to identify monoallelically methylated loci. Using the Hardy-Weinberg theorem for each SNP locus, it could be established whether the observed frequency of samples featured by biallelic methylation was lower than randomly expected. Applied on 334 MethylCap-seq samples of very diverse origin, this resulted in the identification of 80 genomic regions featured by monoallelic DNA-methylation. Of these 80 loci, 49 are located in genic regions of which 25 have already been linked to imprinting. Further analysis revealed statistically significant enrichment of these loci in promoter regions, further establishing the relevance and usefulness of the method. Additional validation of the found loci was done using 14 whole-genome bisulfite sequencing data sets. Importantly, the developed approach can be easily applied to other enrichment-based sequencing technologies, such as the ChIP-seq-based identification of monoallelic histone modifications.


2017 ◽  
Author(s):  
Katarzyna Wreczycka ◽  
Alexander Gosdschan ◽  
Dilmurat Yusuf ◽  
Björn Grüening ◽  
Yassen Assenov ◽  
...  

AbstractDNA methylation is one of the main epigenetic modifications in the eukaryotic genome; it has been shown to play a role in cell-type specific regulation of gene expression, and therefore cell-type identity. Bisulfite sequencing is the gold-standard for measuring methylation over the genomes of interest. Here, we review several techniques used for the analysis of high-throughput bisulfite sequencing. We introduce specialized short-read alignment techniques as well as pre/post-alignment quality check methods to ensure data quality. Furthermore, we discuss subsequent analysis steps after alignment. We introduce various differential methylation methods and compare their performance using simulated and real bisulfite sequencing datasets. We also discuss the methods used to segment methylomes in order to pinpoint regulatory regions. We introduce annotation methods that can be used for further classification of regions returned by segmentation and differential methylation methods. Finally, we review software packages that implement strategies to efficiently deal with large bisulfite sequencing datasets locally and we discuss online analysis workflows that do not require any prior programming skills. The analysis strategies described in this review will guide researchers at any level to the best practices of bisulfite sequencing analysis.


Epigenomics ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 1679-1692
Author(s):  
Jiang Zhu ◽  
Mu Su ◽  
Yue Gu ◽  
Xingda Zhang ◽  
Wenhua Lv ◽  
...  

Aim: To comprehensively identify allele-specific DNA methylation (ASM) at the genome-wide level. Methods: Here, we propose a new method, called GeneASM, to identify ASM using high-throughput bisulfite sequencing data in the absence of haplotype information. Results: A total of 2194 allele-specific DNA methylated genes were identified in the GM12878 lymphocyte lineage using GeneASM. These genes are mainly enriched in cell cytoplasm function, subcellular component movement or cellular linkages. GM12878 methylated DNA immunoprecipitation sequencing, and methylation sensitive restriction enzyme sequencing data were used to evaluate ASM. The relationship between ASM and disease was further analyzed using the The Cancer Genome Atlas (TCGA) data of lung adenocarcinoma (LUAD), and whole genome bisulfite sequencing data. Conclusion: GeneASM, which recognizes ASM by high-throughput bisulfite sequencing and heterozygous single-nucleotide polymorphisms, provides new perspective for studying genomic imprinting.


2008 ◽  
Vol 36 (5) ◽  
pp. e34-e34 ◽  
Author(s):  
C. Rohde ◽  
Y. Zhang ◽  
T. P. Jurkowski ◽  
H. Stamerjohanns ◽  
R. Reinhardt ◽  
...  

2019 ◽  
Author(s):  
Viivi Halla-aho ◽  
Harri Lähdesmäki

AbstractMotivationDNA methylation is an important epigenetic modification, which has multiple functions. DNA methylation and its connections to diseases have been extensively studied in recent years. It is known that DNA methylation levels of neighboring cytosines are correlated and that differential DNA methylation typically occurs rather as regions instead of individual cytosine level.ResultsWe have developed a generalized linear mixed model, LuxUS, that makes use of the correlation between neighboring cytosines to facilitate analysis of differential methylation. LuxUS implements a likelihood model for bisulfite sequencing data that accounts for experimental variation in underlying biochemistry. LuxUS can model both binary and continuous covariates, and mixed model formulation enables including replicate and cytosine random effects. Spatial correlation is included to the model through a cytosine random effect correlation structure. We show with simulation experiments that by utilizing the spatial correlation we gain more power to the statistical testing of differential DNA methylation. Results with real bisulfite sequencing data set show that LuxUS is able to detect biologically significant differentially methylated cytosines.AvailabilityThe tool is available at https://github.com/hallav/LuxUS.Supplementary informationSupplementary data are available at bioRxiv.


Sign in / Sign up

Export Citation Format

Share Document