scholarly journals Mobility as the purpose of postural control

2017 ◽  
Author(s):  
Charlotte Le Mouel ◽  
Romain Brette

AbstractCounteracting the destabilizing force of gravity is usually considered to be the main purpose of postural control. However, from the consideration of the mechanical requirements for movement, we argue that posture is adjusted in view of providing impetus for movement. Thus, we show that the posture that is usually adopted in quiet standing in fact allows torque for potential movement. Moreover, when performing a movement - either voluntarily or in response to an external perturbation - we show that the postural adjustments are organized both spatially and temporally so as to provide the required torque for the movement. Thus, when movement is performed skillfully, the force of gravity is not counteracted but actually used to provide impetus to movement. This ability to move one’s weight so as to exploit the torque of gravity seems to be dependent on development and skill learning, and is impaired in aging.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qiuhua Yu ◽  
Yunxia Huo ◽  
Min Chen ◽  
Zhou Zhang ◽  
Zhicheng Li ◽  
...  

Objectives. To explore the relationship between postural control and pain-related clinical outcomes in patients with chronic nonspecific low back pain (cNLBP). Methods. Participants with cNLBP and healthy individuals were recruited. Muscle activities were recorded during internal and external perturbation tasks. Postural control capacity was assessed by muscle onset time and integrals of electromyography (iEMGs) of postural muscles during the phases of anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs). Correlation analysis was employed to investigate the relationship between postural control capacity, pain, and disability. Results. Twenty-seven patients with cNLBP and 27 healthy participants were recruited. Gastrocnemius (GA) muscle onset time was earlier in the cNLBP group than in the control group in the internal perturbation task. The onset time of GA and erector spinae (ES) of the cNLBP group was later than that of the controls in the external perturbation task. Disability level moderately correlated with the iEMGs of rectus abdominis (RA), GA, and external oblique (EO) during APAs. Pain score moderately correlated with the iEMGs of RA, EO, and ES during CPAs of perturbation tasks. Conclusion. cNLBP participants had altered muscle activation strategy to maintain postural stability in response to perturbation. This study further discovered that pain-related disabilities of cNLBP participants were likely related to the APAs capacity, whereas the pain intensity may relate to the CPAs capacity. Pain and disability may therefore be related to the control process of the posture-related muscles.


2019 ◽  
Vol 25 (5) ◽  
pp. 428-432
Author(s):  
Victor Spiandor Beretta ◽  
Paulo Cezar Rocha Santos ◽  
Diego Alejandro Rojas Jaimes ◽  
Mayara Borkowske Pestana ◽  
Alejandra Maria Franco Jimenez ◽  
...  

ABSTRACT Introduction Cognitive components are necessary to maintain posture during external perturbations. However, few studies have investigated postural control when external perturbations are associated with a concomitant cognitive task (DT). Objectives To analyze the behavior of reactive adjustments after perturbation with different intensities and displacements in active young adults; and to analyze the influence of DT on predictive and reactive adjustments in different perturbation conditions. Methods Twenty-eight physically active young adults stood on an item of equipment that produced displacements of the base. Four experimental conditions were introduced in a single task (ST) and DT (cognitive-report how many times a pre-established number appeared in the audio): 1 (5 cm and 10 cm/s); 2 (5 cm and 25 cm/s); 3 (12 cm and 10 cm/s) and 4 (12 cm and 25 cm/s). Three attempts were carried out for each condition (total=24). Center of pressure (CoP) parameters were analyzed considering the following windows: predictive (-250 to +50 ms), reactive 1 (+50 to +200 ms) and reactive 2 (+200 to +700 ms), in comparison to the start of the CoP activity. One-way ANOVAs were performed to analyze predictive adjustments, while two-way ANOVAs with factor for task (STxDT) and condition (1x2x3x4), with repeated measurements, were performed for the reactive adjustments. Results One-way ANOVA (predictive) indicated that the subjects had higher CoP parameters in ST vs DT. In reactive adjustments 1 and 2, ANOVA indicated greater CoP parameters in condition 2 and 4 when compared to 1 and 3, and in the ST vs DT. The subjects took longer to recover stable position in conditions 1 and 3 than in conditions 2 and 4. Conclusion Perturbation intensity has a greater influence on postural adjustments to maintain balance than on magnitude. Moreover, the association of cognitive tasks with external perturbation decreases CoP oscillation. Therefore, cognitive resources play an important role in postural control after perturbation. Level of evidence III; Study of nonconsecutive patients, with no “gold” standard applied uniformly.


2021 ◽  
Vol 57 ◽  
pp. 102512
Author(s):  
Yosuke Tomita ◽  
Yuto Tanaka ◽  
Kazuki Sako ◽  
Yoshiaki Ono ◽  
Masahiro Tanaka

1999 ◽  
Vol 9 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Mark G. Carpenter ◽  
James S. Frank ◽  
Cathy P. Silcher

One possible factor influencing the control of upright stance is the perceived threat to one's personal safety, i.e. balance confidence. We explored this factor by examining the control of stationary stance when standing on an elevated platform under various conditions of reduced visual and vestibular inputs. Twenty-eight adults (14 male and 14 female, mean age = 23.5 years) participated in the experiment. Postural control was examined by recording the amplitude variability (RMS) and mean power frequency (MPF) of center of pressure excursions (COP) over a 2-minute interval while participants stood in a normal stance on a low (0.19 m) and a high (0.81 m) platform with toes positioned either at or away from the edge of the platform. Vision was manipulated through eyes open and eyes closed trials. Vestibular input was reduced by tilting the head into extension [1]. Anterior-posterior RMS and MPF of COP were significantly influenced by an interaction between surface height and vision. When vision was available, a significant decrease in RMS was observed during quiet standing on a high surface compared to a low surface independent of step restriction. When vision was available MPF increased when subjects were raised from a low to a high surface. The mean position of the COP was significantly influenced by an interaction between height and step restriction. Differences in RMS and MPF responses to height manipulation were observed between genders in eyes closed conditions. Vestibular input influenced postural control at both low and high levels with significant increases in RMS when vestibular input was reduced. The reciprocal changes observed in RMS and MPF suggest modifications to postural control through changes in ankle stiffness. Vision appears to play a role in increasing ankle stiffness when balance confidence is compromised.


1994 ◽  
Vol 72 (6) ◽  
pp. 2892-2902 ◽  
Author(s):  
A. L. Burleigh ◽  
F. B. Horak ◽  
F. Malouin

1. In this study, the interaction between anticipatory postural adjustments for step initiation and automatic postural responses to an external perturbation were investigated by having subjects initiate a voluntary forward step while perturbed by a backward surface translation, which caused forward sway of the body. The postural adjustments for step initiation act to move the body center of mass (COM) forward, whereas the automatic postural responses act to move the COM backward to restore stance equilibrium. Because the postural behaviors are in opposition, we asked whether a temporal hierarchy exists in which automatic postural responses are executed to restore equilibrium and followed by stereotypic postural adjustments for step initiation, or whether the interaction between these two postural behaviors is more dynamic. 2. Lower extremity electromyographs (EMGs), ground reaction forces, and kinematics were recorded from 10 subjects during three conditions: to quantify the anticipatory postural adjustments for step initiation, subjects stepped forward as soon as they felt a proprioceptive cue; to quantify the automatic postural responses to perturbation, subjects maintained stance equilibrium in response to a backward surface translation under both feet; and to quantify the interaction between the postural adjustments for the voluntary step and the automatic responses to the perturbation, subjects were exposed to a backward surface translation and instructed to step forward as soon as they felt the platform begin to move. 3. The anticipatory adjustments for step initiation included tibialis activation [stance limb = 163 +/- 28 (SE) ms; swing limb = 173 +/- 33 ms] and soleus inhibition resulting in center of foot pressure (COP) moving backward and lateral toward the swing limb to propel the COM forward over the stance limb. Subsequently, activation of the swing limb gastrocnemius resulted in heel-off. In contrast, the automatic postural adjustments for maintenance of stance equilibrium during a backward surface translation included activation of soleus and gastrocnemius (104 +/- 23 ms and 115 +/- 14 ms, respectively) resulting in a symmetrical forward displacement of the COP that moved the COM back to its original position with respect to the feet. 4. When a forward step was initiated in response to the translation, the automatic postural responses were reduced in amplitude bilaterally in soleus and in the stance limb gastrocnemius. When present the postural response occurred at the same latency when the goal was to initiate a step as when the goal was to maintain standing.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 77 (1) ◽  
pp. 51-59
Author(s):  
Agnieszka Opala-Berdzik ◽  
Magdalena Głowacka ◽  
Kajetan J. Słomka

Abstract The aim of this study was to determine whether young adolescent female artistic gymnasts demonstrate better functional stability than age- and sex-matched non-athletes. Different characteristics of the gymnasts’ postural control were expected to be observed. Twenty-two 10- to 13-year-old healthy females (ten national-level artistic gymnasts and twelve non-athletes) participated in the study. To assess their forward functional stability, the 30-s limit of stability test was performed on a force plate. The test consisted of three phases: quiet standing, transition to maximal forward leaning, and standing in the maximal forward leaning position. Between-group comparisons of the directional subcomponents of the root mean squares and mean velocities of the center of pressure and rambling-trembling displacements in two phases (quiet standing and standing in maximal leaning) were conducted. Moreover, anterior stability limits were compared. During standing in maximal forward leaning, there were no differences in the center of pressure and rambling measures between gymnasts and non-athletes (p > 0.05). The values of trembling measures in both anterior-posterior and medial-lateral directions were significantly lower in gymnasts (p < 0.05). Both groups presented similar values for anterior stability limits (p > 0.05). The comparisons of rambling components may suggest a similar supraspinal control of standing in the maximal leaning position between gymnasts and healthy non-athletes. However, decreased trembling in gymnasts may indicate reduced noise in their postural control system possibly due to superior control processes at the spinal level. The anterior stability limit was not influenced by gymnastics training in female adolescents.


2013 ◽  
Vol 45 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Ann-Katrin Stensdotter ◽  
Anne Kristin Wanvik ◽  
Håvard W. Lorås

Sign in / Sign up

Export Citation Format

Share Document