scholarly journals Mitochondrial genome variation affects the mutation rate of the nuclear genome in Drosophila melanogaster

2017 ◽  
Author(s):  
Jonci N. Wolff ◽  
M. Florencia Camus ◽  
Damian K. Dowling ◽  
Björn Rogell

AbstractMutations are the raw material for evolutionary change. While the mutation rate has been thought constant between individuals, recent research has shown that poor genetic condition can elevate the mutation rate. Mitonuclear genetic conflict is a potential source of poor genetic condition, and considering the high mutation rate of mitochondrial genomes, there should be ample scope for mitochondrial mutations to interfere with genetic condition, with concomitant effects on the nuclear mutation rate. Moreover, because theory suggests mitochondrial genetic effects will often be male-biased, such effects could be more strongly felt in males than females. Here, by mating irradiated male Drosophila melanogaster to isogenic females bearing six distinct mitochondrial haplotypes, we tested whether mitochondrial genetic variation affects DNA repair capacity, and whether effects of mutation load on reproductive function are shaped by interactions between sex and mitochondrial haplotype. We found mitochondrial genetic effects on DNA repair, and that the mutational variance of reproductive fitness was higher in males bearing haplotypes characterized by high female fitness. These results suggest that mitochondrial genome variation may affect the mutation rate, and that induced mutations interact more strongly with male than female reproductive function. The potential for haplotype-specific effects on the nuclear mutation rate has broad implications for evolutionary dynamics, such as the accumulation of genetic load, adaptive potential, and the evolution of sexual dimorphism.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Nathanaëlle Saclier ◽  
Patrick Chardon ◽  
Florian Malard ◽  
Lara Konecny-Dupré ◽  
David Eme ◽  
...  

All organisms on Earth are exposed to low doses of natural radioactivity but some habitats are more radioactive than others. Yet, documenting the influence of natural radioactivity on the evolution of biodiversity is challenging. Here, we addressed whether organisms living in naturally more radioactive habitats accumulate more mutations across generations using 14 species of waterlice living in subterranean habitats with contrasted levels of radioactivity. We found that the mitochondrial and nuclear mutation rates across a waterlouse species’ genome increased on average by 60% and 30%, respectively, when radioactivity increased by a factor of three. We also found a positive correlation between the level of radioactivity and the probability of G to T (and complementary C to A) mutations, a hallmark of oxidative stress. We conclude that even low doses of natural bedrock radioactivity influence the mutation rate possibly through the accumulation of oxidative damage, in particular in the mitochondrial genome.



2020 ◽  
Author(s):  
Nathanaëlle Saclier ◽  
Patrick Chardon ◽  
Florian Malard ◽  
Lara Konecny-Dupré ◽  
David Eme ◽  
...  

AbstractAll organisms on Earth are exposed to low doses of natural radioactivity but some habitats are more radioactive than others. Yet, documenting the influence of natural radioactivity on the evolution of biodiversity is challenging. Here, we addressed whether organisms living in naturally more radioactive habitats accumulate more mutations across generations using 14 species of waterlice living in subterranean habitats with contrasted levels of radioactivity. We found that the mitochondrial and nuclear mutation rates across a waterlouse species’ genome increased on average by 60 and 30%, respectively, when radioactivity increased by a factor of three. We also found a positive correlation between the level of radioactivity and the probability of G to T (and complementary C to A) mutations, a hallmark of oxidative stress. We conclude that even low doses of natural bedrock radioactivity influence the mutation rate through the likely accumulation of oxidative damage, in particular in the mitochondrial genome.





2013 ◽  
Vol 280 (1750) ◽  
pp. 20121874 ◽  
Author(s):  
Alexei A. Maklakov ◽  
Simone Immler ◽  
Hanne Løvlie ◽  
Ilona Flis ◽  
Urban Friberg

The rate by which new mutations are introduced into a population may have far-reaching implications for processes at the population level. Theory assumes that all individuals within a population have the same mutation rate, but this assumption may not be true. Compared with individuals in high condition, those in poor condition may have fewer resources available to invest in DNA repair, resulting in elevated mutation rates. Alternatively, environmentally induced stress can result in increased investment in DNA repair at the expense of reproduction. Here, we directly test whether sexual harassment by males, known to reduce female condition, affects female capacity to alleviate DNA damage in Drosophila melanogaster fruitflies. Female gametes can repair double-strand DNA breaks in sperm, which allows manipulating mutation rate independently from female condition. We show that male harassment strongly not only reduces female fecundity, but also reduces the yield of dominant lethal mutations, supporting the hypothesis that stressed organisms invest relatively more in repair mechanisms. We discuss our results in the light of previous research and suggest that social effects such as density and courtship can play an important and underappreciated role in mediating condition-dependent mutation rate.



ACS Nano ◽  
2021 ◽  
Author(s):  
Sneh M. Toprani ◽  
Dimitrios Bitounis ◽  
Qiansheng Huang ◽  
Nathalia Oliveira ◽  
Kee Woei Ng ◽  
...  


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 479
Author(s):  
Pavel Vodicka ◽  
Ladislav Andera ◽  
Alena Opattova ◽  
Ludmila Vodickova

The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.



2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Aysel Kalayci Yigin ◽  
Mehmet Bulent Vatan ◽  
Ramazan Akdemir ◽  
Muhammed Necati Murat Aksoy ◽  
Mehmet Akif Cakar ◽  
...  

Polymorphisms in Lys939Gln XPC gene may diminish DNA repair capacity, eventually increasing the risk of carcinogenesis. The aim of the present study was to evaluate the significance of polymorphism Lys939Gln in XPC gene in patients with mitral chordae tendinea rupture (MCTR). Twenty-one patients with MCTR and thirty-seven age and sex matched controls were enrolled in the study. Genotyping of XPC gene Lys939Gln polymorphism was carried out using polymerase chain reaction- (PCR-) restriction fragment length polymorphism (RFLP). The frequencies of the heterozygote genotype (Lys/Gln-AC) and homozygote genotype (Gln/Gln-CC) were significantly different in MCTR as compared to control group, respectively (52.4% versus 43.2%,p=0.049; 38.15% versus 16.2%,p=0.018). Homozygote variant (Gln/Gln) genotype was significantly associated with increased risk of MCTR (OR = 2.059; 95% CI: 1.097–3.863;p=0.018). Heterozygote variant (Lys/Gln) genotype was also highly significantly associated with increased risk of MCTR (OR = 1.489; 95% CI: 1.041–2.129;p=0.049). The variant allele C was found to be significantly associated with MCTR (OR = 1.481; 95% CI: 1.101–1.992;p=0.011). This study has demonstrated the association of XPC gene Lys939Gln polymorphism with MCTR, which is significantly associated with increased risk of MCTR.



Author(s):  
Eliana E. Ocolotobiche ◽  
Ricard Marcos Dauder ◽  
Alba Mabel Güerci


Sign in / Sign up

Export Citation Format

Share Document