scholarly journals Slow conformational exchange and overall rocking motion in ubiquitin protein crystals

2017 ◽  
Author(s):  
Vilius Kurauskas ◽  
Sergei A. Izmailov ◽  
Olga N. Rogacheva ◽  
Audrey Hessel ◽  
Isabel Ayala ◽  
...  

AbstractProteins perform their functions in solution but their structures are most frequently studied inside crystals. Here we probe how the crystal packing alters microsecond dynamics, using solid-state NMR measurements and multi-microsecond MD simulations of different crystal forms of ubiquitin. In particular, NEar-Rotary-resonance Relaxation Dispersion (NERRD) experiments probe angular backbone motion, while Bloch-McConnell Relaxation Dispersion data report on fluctuations of the local electronic environment. These experiments and simulations reveal that the packing of the protein can significantly alter the thermodynamics and kinetics of local conformational exchange. Moreover, we report small-amplitude reorientational motion of protein molecules in the crystal lattice with a ∼3-5° amplitude on a tens-of-microseconds time scale in one of the crystals, but not in others. An intriguing possibility arises that overall motion is to some extent coupled to local dynamics. Our study highlights the importance of considering the packing when analyzing dynamics of crystalline proteins.


2018 ◽  
Vol 4 (3) ◽  
pp. 33 ◽  
Author(s):  
Tsuyoshi Konuma ◽  
Aritaka Nagadoi ◽  
Jun-ichi Kurita ◽  
Takahisa Ikegami

Nuclear magnetic resonance relaxation dispersion (rd) experiments provide kinetics and thermodynamics information of molecules undergoing conformational exchange. Rd experiments often use a Carr-Purcell-Meiboom-Gill (CPMG) pulse train equally separated by a spin-state selective inversion element (U-element). Even with measurement parameters carefully set, however, parts of 1H–15N correlations sometimes exhibit large artifacts that may hamper the subsequent analyses. We analyzed such artifacts with a combination of NMR measurements and simulation. We found that particularly the lowest CPMG frequency (νcpmg) can also introduce large artifacts into amide 1H–15N and aromatic 1H–13C correlations whose 15N/13C resonances are very close to the carrier frequencies. The simulation showed that the off-resonance effects and miscalibration of the CPMG π pulses generate artifact maxima at resonance offsets of even and odd multiples of νcpmg, respectively. We demonstrate that a method once introduced into the rd experiments for molecules having residual dipolar coupling significantly reduces artifacts. In the method the 15N/13C π pulse phase in the U-element is chosen between x and y. We show that the correctly adjusted sequence is tolerant to miscalibration of the CPMG π pulse power as large as ±10% for most amide 15N and aromatic 13C resonances of proteins.





Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1312-1316 ◽  
Author(s):  
Dmitry M. Korzhnev ◽  
Tomasz L. Religa ◽  
Wiktor Banachewicz ◽  
Alan R. Fersht ◽  
Lewis E. Kay

Proteins can sample conformational states that are critical for function but are seldom detected directly because of their low occupancies and short lifetimes. In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, in concert with a chemical shift–based method for structure elucidation, to determine an atomic-resolution structure of an “invisible” folding intermediate of a small protein module: the FF domain. The structure reveals non-native elements preventing formation of the native conformation in the carboxyl-terminal part of the protein. This is consistent with the kinetics of folding in which a well-structured intermediate forms rapidly and then rearranges slowly to the native state. The approach introduces a general strategy for structure determination of low-populated and transiently formed protein states.



Author(s):  
A. Engel ◽  
D.L. Dorset ◽  
A. Massalski ◽  
J.P. Rosenbusch

Porins represent a group of channel forming proteins that facilitate diffusion of small solutes across the outer membrane of Gram-negative bacteria, while excluding large molecules (>650 Da). Planar membranes reconstituted from purified matrix porin (OmpF protein) trimers and phospholipids have allowed quantitative functional studies of the voltage-dependent channels and revealed concerted activation of triplets. Under the same reconstitution conditions but using high protein concentrations porin aggregated to 2D lattices suitable for electron microscopy and image processing. Depending on the lipid-to- protein ratio three different crystal packing arrangements were observed: a large (a = 93 Å) and a small (a = 79 Å) hexagonal and a rectangular (a = 79 Å b = 139 Å) form with p3 symmetry for the hexagonal arrays. In all crystal forms distinct stain filled triplet indentations could be seen and were found to be morphologically identical within a resolution of (22 Å). It is tempting to correlate stain triplets with triple channels, but the proof of this hypothesis requires an analysis of the structure in 3 dimensions.



2021 ◽  
Author(s):  
Arghadwip Paul ◽  
Suman Samantray ◽  
Marco Anteghini ◽  
Mohammed Khaled ◽  
Birgit Strodel

The convergence of MD simulations is tested using varying measures for the intrinsically disordered amyloid-β peptide (Aβ). Markov state models show that 20–30 μs of MD is needed to reliably reproduce the thermodynamics and kinetics of Aβ.



2017 ◽  
Vol 147 (14) ◽  
pp. 144203 ◽  
Author(s):  
Miri Zilka ◽  
Simone Sturniolo ◽  
Steven P. Brown ◽  
Jonathan R. Yates




2020 ◽  
Vol 117 (11) ◽  
pp. 5844-5852 ◽  
Author(s):  
Alberto Ceccon ◽  
Vitali Tugarinov ◽  
Rodolfo Ghirlando ◽  
G. Marius Clore

Human profilin I reduces aggregation and concomitant toxicity of the polyglutamine-containing N-terminal region of the huntingtin protein encoded by exon 1 (httex1) and responsible for Huntington’s disease. Here, we investigate the interaction of profilin with httex1using NMR techniques designed to quantitatively analyze the kinetics and equilibria of chemical exchange at atomic resolution, including relaxation dispersion, exchange-induced shifts, and lifetime line broadening. We first show that the presence of two polyproline tracts in httex1, absent from a shorter huntingtin variant studied previously, modulates the kinetics of the transient branched oligomerization pathway that precedes nucleation, resulting in an increase in the populations of the on-pathway helical coiled-coil dimeric and tetrameric species (τex≤ 50 to 70 μs), while leaving the population of the off-pathway (nonproductive) dimeric species largely unaffected (τex∼750 μs). Next, we show that the affinity of a single molecule of profilin to the polyproline tracts is in the micromolar range (Kdiss∼ 17 and ∼ 31 μM), but binding of a second molecule of profilin is negatively cooperative, with the affinity reduced ∼11-fold. The lifetime of a 1:1 complex of httex1with profilin, determined using a shorter huntingtin variant containing only a single polyproline tract, is shown to be on the submillisecond timescale (τex∼ 600 μs andKdiss∼ 50 μM). Finally, we demonstrate that, in stable profilin–httex1complexes, the productive oligomerization pathway, leading to the formation of helical coiled-coil httex1tetramers, is completely abolished, and only the pathway resulting in “nonproductive” dimers remains active, thereby providing a mechanistic basis for how profilin reduces aggregation and toxicity of httex1.



Sign in / Sign up

Export Citation Format

Share Document