Cellular responses to proteostasis perturbations reveal non-optimal feedback in chaperone networks

2017 ◽  
Author(s):  
Asmita Ghosh ◽  
Abhilash Gangadharan ◽  
Sarada Das ◽  
Monika Verma ◽  
Latika Matai ◽  
...  

AbstractThe proteostasis network (PN) comprises a plethora of proteins that are dedicated to aid in protein folding; some with over-lapping functions. Despite this, there are multiple pathophysiological states associated with depletion of chaperones. This is counter-intuitive assuming cells have the ability to re-program transcriptional outputs in accordance with its proteostasic limitations. To this effect, we have used S. cerevisiae to understand the route a cell takes as a response when challenged with different proteostasis impairments. Using 14 single deletion strains of genes of Protein Quality Control (PQC) system, we quantify their proteostasis impairment and the transcriptional response. In most cases cellular response was incapable of restoring proteostasis. The response did not activate proteostasis components or pathways that could complement the function of the missing PQC gene. Over-expression of alternate machineries, could restore part of the proteostasis defect in deletion strains. We posit that epistasis guided synthetic biology approaches may be helpful in realizing the true potential of the cellular chaperone machinery.

2012 ◽  
Vol 23 (16) ◽  
pp. 3041-3056 ◽  
Author(s):  
Liliana Malinovska ◽  
Sonja Kroschwald ◽  
Matthias C. Munder ◽  
Doris Richter ◽  
Simon Alberti

Acute stress causes a rapid redistribution of protein quality control components and aggregation-prone proteins to diverse subcellular compartments. How these remarkable changes come about is not well understood. Using a phenotypic reporter for a synthetic yeast prion, we identified two protein-sorting factors of the Hook family, termed Btn2 and Cur1, as key regulators of spatial protein quality control in Saccharomyces cerevisiae. Btn2 and Cur1 are undetectable under normal growth conditions but accumulate in stressed cells due to increased gene expression and reduced proteasomal turnover. Newly synthesized Btn2 can associate with the small heat shock protein Hsp42 to promote the sorting of misfolded proteins to a peripheral protein deposition site. Alternatively, Btn2 can bind to the chaperone Sis1 to facilitate the targeting of misfolded proteins to a juxtanuclear compartment. Protein redistribution by Btn2 is accompanied by a gradual depletion of Sis1 from the cytosol, which is mediated by the sorting factor Cur1. On the basis of these findings, we propose a dynamic model that explains the subcellular distribution of misfolded proteins as a function of the cytosolic concentrations of molecular chaperones and protein-sorting factors. Our model suggests that protein aggregation is not a haphazard process but rather an orchestrated cellular response that adjusts the flux of misfolded proteins to the capacities of the protein quality control system.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yusuke Miyazaki ◽  
Ling-chun Chen ◽  
Bernard W Chu ◽  
Tomek Swigut ◽  
Thomas J Wandless

Eukaryotic cells possess a variety of signaling pathways that prevent accumulation of unfolded and misfolded proteins. Chief among these is the heat shock response (HSR), which is assumed to respond to unfolded proteins in the cytosol and nucleus alike. In this study, we probe this axiom further using engineered proteins called ‘destabilizing domains’, whose folding state we control with a small molecule. The sudden appearance of unfolded protein in mammalian cells elicits a robust transcriptional response, which is distinct from the HSR and other known pathways that respond to unfolded proteins. The cellular response to unfolded protein is strikingly different in the nucleus and the cytosol, although unfolded protein in either compartment engages the p53 network. This response provides cross-protection during subsequent proteotoxic stress, suggesting that it is a central component of protein quality control networks, and like the HSR, is likely to influence the initiation and progression of human pathologies.


Cell Reports ◽  
2021 ◽  
Vol 35 (13) ◽  
pp. 109328
Author(s):  
Frederik Eisele ◽  
Anna Maria Eisele-Bürger ◽  
Xinxin Hao ◽  
Lisa Larsson Berglund ◽  
Johanna L. Höög ◽  
...  

2020 ◽  
Author(s):  
Chi-Ning Chuang ◽  
Tai-Ting Woo ◽  
Shih-Ying Tsai ◽  
Wan-Chen Li ◽  
Chia-Ling Chen ◽  
...  

AbstractIntrinsically disordered regions (IDRs) are protein sequences lacking fixed or ordered three-dimensional structures. Many IDRs are endowed with important molecular functions such as physical interactions, posttranslational modifications or solubility enhancement. We reveal that several biologically important IDRs can act as N-terminal fusion carriers to promote target protein folding or protein quality control, thereby enhancing protein expression. This nanny function has a reasonably strong correlation with high S/T/Q/N amino acid content in IDRs and it is tunable (e.g., via phosphorylation) to regulate protein homeostasis. We propose a hypothesis that “N-terminal intrinsic disorder facilitates abundance” (NIDFA) to explain how some yeast proteins use their N-terminal IDRs (N-IDRs) to generate high levels of protein product. These N-IDRs are versatile toolkits for functional divergence in signaling and evolution.SignificanceDisorder within an otherwise well-structured protein is mostly found in intrinsically disordered regions (IDRs). IDRs can provide many advantages to proteins, including: (1) mediating protein-protein or protein-peptide interactions by adopting different conformations; (2) facilitating protein regulation via diverse posttranslational modifications; and (3) regulating the half-lives of proteins that have been targeted for proteasomal degradation. Here, we report that several biologically important IDRs in S. cerevisiae can act as N-terminal fusion carriers to promote target protein folding or protein quality control, thereby enhancing protein expression. We demonstrate by genetic and bioinformatic analyses that this nanny function is well correlated with high content of serine, threonine, glutamine and asparagine in IDRs and is tunable (e.g., via phosphorylation) to regulate protein homeostasis.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3337
Author(s):  
Haisen Li ◽  
Shengyi Sun

As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field.


Author(s):  
Lihui Wang ◽  
Yihong Ye

Protein translocation across membranes is a critical facet of protein biogenesis in compartmentalized cells as proteins synthesized in the cytoplasm often need to traverse across lipid bilayers via proteinaceous channels to reach their final destinations. It is well established that protein biogenesis is tightly linked to various protein quality control processes, which monitor errors in protein folding, modification, and localization. However, little is known about how cells cope with translocation defective polypeptides that clog translocation channels (translocons) during protein translocation. This review summarizes recent studies, which collectively reveal a set of translocon-associated quality control strategies for eliminating polypeptides stuck in protein-conducting channels in the endoplasmic reticulum and mitochondria.


2019 ◽  
Vol 218 (10) ◽  
pp. 3171-3187 ◽  
Author(s):  
Zhihao Sun ◽  
Jeffrey L. Brodsky

Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document