scholarly journals SCENIC: Single-cell regulatory network inference and clustering

2017 ◽  
Author(s):  
Sara Aibar ◽  
Carmen Bravo González-Blas ◽  
Thomas Moerman ◽  
Jasper Wouters ◽  
Vân Anh Huynh-Thu ◽  
...  

AbstractSingle-cell RNA-seq allows building cell atlases of any given tissue and infer the dynamics of cellular state transitions during developmental or disease trajectories. Both the maintenance and transitions of cell states are encoded by regulatory programs in the genome sequence. However, this regulatory code has not yet been exploited to guide the identification of cellular states from single-cell RNA-seq data. Here we describe a computational resource, called SCENIC (Single Cell rEgulatory Network Inference and Clustering), for the simultaneous reconstruction of gene regulatory networks (GRNs) and the identification of stable cell states, using single-cell RNA-seq data. SCENIC outperforms existing approaches at the level of cell clustering and transcription factor identification. Importantly, we show that cell state identification based on GRNs is robust towards batch-effects and technical-biases. We applied SCENIC to a compendium of single-cell data from the mouse and human brain and demonstrate that the proper combinations of transcription factors, target genes, enhancers, and cell types can be identified. Moreover, we used SCENIC to map the cell state landscape in melanoma and identified a gene regulatory network underlying a proliferative melanoma state driven by MITF and STAT and a contrasting network controlling an invasive state governed by NFATC2 and NFIB. We further validated these predictions by showing that two transcription factors are predominantly expressed in early metastatic sentinel lymph nodes. In summary, SCENIC is the first method to analyze scRNA-seq data using a network-centric, rather than cell-centric approach. SCENIC is generic, easy to use, and flexible, and allows for the simultaneous tracing of genomic regulatory programs and the mapping of cellular identities emerging from these programs. Availability: SCENIC is available as an R workflow based on three new R/Bioconductor packages: GENIE3, RcisTarget and AUCell. As scalable alternative to GENIE3, we also provide GRNboost, paving the way towards the network analysis across millions of single cells.

2021 ◽  
Vol 1 ◽  
Author(s):  
Makoto Kashima ◽  
Yuki Shida ◽  
Takashi Yamashiro ◽  
Hiromi Hirata ◽  
Hiroshi Kurosaka

Gene regulatory network (GRN) inference is an effective approach to understand the molecular mechanisms underlying biological events. Generally, GRN inference mainly targets intracellular regulatory relationships such as transcription factors and their associated targets. In multicellular organisms, there are both intracellular and intercellular regulatory mechanisms. Thus, we hypothesize that GRNs inferred from time-course individual (whole embryo) RNA-Seq during development can reveal intercellular regulatory relationships (signaling pathways) underlying the development. Here, we conducted time-course bulk RNA-Seq of individual mouse embryos during early development, followed by pseudo-time analysis and GRN inference. The results demonstrated that GRN inference from RNA-Seq with pseudo-time can be applied for individual bulk RNA-Seq similar to scRNA-Seq. Validation using an experimental-source-based database showed that our approach could significantly infer GRN for all transcription factors in the database. Furthermore, the inferred ligand-related and receptor-related downstream genes were significantly overlapped. Thus, the inferred GRN based on whole organism could include intercellular regulatory relationships, which cannot be inferred from scRNA-Seq based only on gene expression data. Overall, inferring GRN from time-course bulk RNA-Seq is an effective approach to understand the regulatory relationships underlying biological events in multicellular organisms.


2019 ◽  
Author(s):  
Ning Wang ◽  
Andrew E. Teschendorff

AbstractInferring the activity of transcription factors in single cells is a key task to improve our understanding of development and complex genetic diseases. This task is, however, challenging due to the relatively large dropout rate and noisy nature of single-cell RNA-Seq data. Here we present a novel statistical inference framework called SCIRA (Single Cell Inference of Regulatory Activity), which leverages the power of large-scale bulk RNA-Seq datasets to infer high-quality tissue-specific regulatory networks, from which regulatory activity estimates in single cells can be subsequently obtained. We show that SCIRA can correctly infer regulatory activity of transcription factors affected by high technical dropouts. In particular, SCIRA can improve sensitivity by as much as 70% compared to differential expression analysis and current state-of-the-art methods. Importantly, SCIRA can reveal novel regulators of cell-fate in tissue-development, even for cell-types that only make up 5% of the tissue, and can identify key novel tumor suppressor genes in cancer at single cell resolution. In summary, SCIRA will be an invaluable tool for single-cell studies aiming to accurately map activity patterns of key transcription factors during development, and how these are altered in disease.


2020 ◽  
Author(s):  
Jianhao Peng ◽  
Ullas V. Chembazhi ◽  
Sushant Bangru ◽  
Ian M. Traniello ◽  
Auinash Kalsotra ◽  
...  

AbstractMotivationWith the use of single-cell RNA sequencing (scRNA-Seq) technologies, it is now possible to acquire gene expression data for each individual cell in samples containing up to millions of cells. These cells can be further grouped into different states along an inferred cell differentiation path, which are potentially characterized by similar, but distinct enough, gene regulatory networks (GRNs). Hence, it would be desirable for scRNA-Seq GRN inference methods to capture the GRN dynamics across cell states. However, current GRN inference methods produce a unique GRN per input dataset (or independent GRNs per cell state), failing to capture these regulatory dynamics.ResultsWe propose a novel single-cell GRN inference method, named SimiC, that jointly infers the GRNs corresponding to each state. SimiC models the GRN inference problem as a LASSO optimization problem with an added similarity constraint, on the GRNs associated to contiguous cell states, that captures the inter-cell-state homogeneity. We show on a mouse hepatocyte single-cell data generated after partial hepatectomy that, contrary to previous GRN methods for scRNA-Seq data, SimiC is able to capture the transcription factor (TF) dynamics across liver regeneration, as well as the cell-level behavior for the regulatory program of each TF across cell states. In addition, on a honey bee scRNA-Seq experiment, SimiC is able to capture the increased heterogeneity of cells on whole-brain tissue with respect to a regional analysis tissue, and the TFs associated specifically to each sequenced tissue.AvailabilitySimiC is written in Python and includes an R API. It can be downloaded from https://github.com/jianhao2016/[email protected], [email protected] informationSupplementary data are available at the code repository.


2020 ◽  
Vol 17 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Aditya Pratapa ◽  
Amogh P. Jalihal ◽  
Jeffrey N. Law ◽  
Aditya Bharadwaj ◽  
T. M. Murali

2017 ◽  
Vol 33 (15) ◽  
pp. 2314-2321 ◽  
Author(s):  
Hirotaka Matsumoto ◽  
Hisanori Kiryu ◽  
Chikara Furusawa ◽  
Minoru S H Ko ◽  
Shigeru B H Ko ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher A Jackson ◽  
Dayanne M Castro ◽  
Giuseppe-Antonio Saldi ◽  
Richard Bonneau ◽  
David Gresham

Understanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse transcriptionally barcoded gene deletion mutants in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We benchmarked a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,228 interactions.


2021 ◽  
Author(s):  
Kushagra Pandey ◽  
Hamim Zafar

Despite recent advances in inferring cellular dynamics using single-cell RNA-seq data, existing trajectory inference (TI) methods face difficulty in accurately reconstructing cell-state manifold and inferring trajectory and cell fate plasticity for complex topologies. We present MARGARET, a novel TI method that utilizes a deep unsupervised metric learning-based approach for inferring the cellular embeddings and employs a novel measure of connectivity between cell clusters and a graph-partitioning approach to reconstruct complex trajectory topologies. MARGARET utilizes the inferred trajectory for determining terminal states and inferring cell-fate plasticity using a scalable absorbing Markov Chain model. On a diverse simulated benchmark, MARGARET outperformed state-of-the-art methods in recovering global topology and cell pseudotime ordering. When applied to experimental datasets from hematopoiesis, embryogenesis, and colon differentiation, MARGARET reconstructed major lineages and associated gene expression trends, better characterized key branching events and transitional cell types, and identified novel cell types, and branching events that were previously uncharacterized.


2019 ◽  
Author(s):  
Jasper Wouters ◽  
Zeynep Kalender-Atak ◽  
Liesbeth Minnoye ◽  
Katina I. Spanier ◽  
Maxime De Waegeneer ◽  
...  

AbstractMelanoma is notorious for its cellular heterogeneity, which is at least partly due to its ability to transition between alternate cell states. Similarly to EMT, melanoma cells with a melanocytic phenotype can switch to a mesenchymal-like phenotype. However, scattered emerging evidence indicates that additional, intermediate state(s) may exist. In order to search for such new melanoma states and decipher their underlying gene regulatory network (GRN), we extensively studied ten patient-derived melanoma cultures by single-cell RNA-seq of >39,000 cells. Although each culture exhibited a unique transcriptome, we identified shared gene regulatory networks that underlie the extreme melanocytic and mesenchymal cell states, as well as one (stable) intermediate state. The intermediate state was corroborated by a distinct open chromatin landscape and governed by the transcription factors EGR3, NFATC2, and RXRG. Single-cell migration assays established that this “transition” state exhibits an intermediate migratory phenotype. Through a dense time-series sampling of single cells and dynamic GRN inference, we unraveled the sequential and recurrent arrangement of transcriptional programs at play during phenotype switching that ultimately lead to the mesenchymal cell state. We provide the scRNA-Seq data with 39,263 melanoma cells on our SCope platform and the ATAC-seq data on a UCSC hub to jointly serve as a resource for the melanoma field. Together, this exhaustive analysis of melanoma cell state diversity indicates that additional states exists between the two extreme melanocytic and mesenchymal-like states. The GRN we identified may serve as a new putative target to prevent the switch to mesenchymal cell state and thereby, acquisition of metastatic and drug resistant potential.


2020 ◽  
Vol 48 (W1) ◽  
pp. W275-W286 ◽  
Author(s):  
Anjun Ma ◽  
Cankun Wang ◽  
Yuzhou Chang ◽  
Faith H Brennan ◽  
Adam McDermaid ◽  
...  

Abstract A group of genes controlled as a unit, usually by the same repressor or activator gene, is known as a regulon. The ability to identify active regulons within a specific cell type, i.e., cell-type-specific regulons (CTSR), provides an extraordinary opportunity to pinpoint crucial regulators and target genes responsible for complex diseases. However, the identification of CTSRs from single-cell RNA-Seq (scRNA-Seq) data is computationally challenging. We introduce IRIS3, the first-of-its-kind web server for CTSR inference from scRNA-Seq data for human and mouse. IRIS3 is an easy-to-use server empowered by over 20 functionalities to support comprehensive interpretations and graphical visualizations of identified CTSRs. CTSR data can be used to reliably characterize and distinguish the corresponding cell type from others and can be combined with other computational or experimental analyses for biomedical studies. CTSRs can, therefore, aid in the discovery of major regulatory mechanisms and allow reliable constructions of global transcriptional regulation networks encoded in a specific cell type. The broader impact of IRIS3 includes, but is not limited to, investigation of complex diseases hierarchies and heterogeneity, causal gene regulatory network construction, and drug development. IRIS3 is freely accessible from https://bmbl.bmi.osumc.edu/iris3/ with no login requirement.


2018 ◽  
Author(s):  
Arnaud Bonnaffoux ◽  
Ulysse Herbach ◽  
Angélique Richard ◽  
Anissa Guillemin ◽  
Sandrine Giraud ◽  
...  

AbstractInference of gene regulatory networks from gene expression data has been a long-standing and notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for gene regulatory network inference, with both successes and limitations. In the present work we propose an iterative algorithm called WASABI, dedicated to inferring a causal dynamical network from time-stamped single-cell data, which tackles some of the limitations associated with current approaches. We first introduce the concept of waves, which posits that the information provided by an external stimulus will affect genes one-by-one through a cascade, like waves spreading through a network. This concept allows us to infer the network one gene at a time, after genes have been ordered regarding their time of regulation. We then demonstrate the ability of WASABI to correctly infer small networks, which have been simulated in silico using a mechanistic model consisting of coupled piecewise-deterministic Markov processes for the proper description of gene expression at the single-cell level. We finally apply WASABI on in vitro generated data on an avian model of erythroid differentiation. The structure of the resulting gene regulatory network sheds a fascinating new light on the molecular mechanisms controlling this process. In particular, we find no evidence for hub genes and a much more distributed network structure than expected. Interestingly, we find that a majority of genes are under the direct control of the differentiation-inducing stimulus. In conclusion, WASABI is a versatile algorithm which should help biologists to fully exploit the power of time-stamped single-cell data.


Sign in / Sign up

Export Citation Format

Share Document