scholarly journals Evolutionary Analysis of Candidate Non-Coding Elements Regulating Neurodevelopmental Genes in Vertebrates

2017 ◽  
Author(s):  
Francisco J. Novo

ABSTRACTMany non-coding regulatory elements conserved in vertebrates regulate the expression of genes involved in development and play an important role in the evolution of morphology through the rewiring of developmental gene networks. Available biological datasets allow the identification of non-coding regulatory elements with high confidence; furthermore, chromatin conformation data can be used to confirm enhancer-promoter interactions in specific tissue types and developmental stages. We have devised an analysis pipeline that integrates datasets about gene expression, enhancer activity, chromatin accessibility, epigenetic marks, and Hi-C contact frequencies in various brain tissues and developmental stages, leading to the identification of eight non-coding elements that might regulate the expression of three genes with important roles in brain development in vertebrates. We have then performed comparative sequence and microsynteny analyses in order to reconstruct the evolutionary history of the regulatory landscape around these genes; we observe a general pattern of ancient regulatory elements conserved across most vertebrate lineages, together with younger elements that appear to be mammal and primate innovations. This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100035)


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Brynn N. Akerberg ◽  
Fei Gu ◽  
Nathan J. VanDusen ◽  
Xiaoran Zhang ◽  
Rui Dong ◽  
...  

Abstract Mapping the chromatin occupancy of transcription factors (TFs) is a key step in deciphering developmental transcriptional programs. Here we use biotinylated knockin alleles of seven key cardiac TFs (GATA4, NKX2-5, MEF2A, MEF2C, SRF, TBX5, TEAD1) to sensitively and reproducibly map their genome-wide occupancy in the fetal and adult mouse heart. These maps show that TF occupancy is dynamic between developmental stages and that multiple TFs often collaboratively occupy the same chromatin region through indirect cooperativity. Multi-TF regions exhibit features of functional regulatory elements, including evolutionary conservation, chromatin accessibility, and activity in transcriptional enhancer assays. H3K27ac, a feature of many enhancers, incompletely overlaps multi-TF regions, and multi-TF regions lacking H3K27ac retain conservation and enhancer activity. TEAD1 is a core component of the cardiac transcriptional network, co-occupying cardiac regulatory regions and controlling cardiomyocyte-specific gene functions. Our study provides a resource for deciphering the cardiac transcriptional regulatory network and gaining insights into the molecular mechanisms governing heart development.



2021 ◽  
Author(s):  
Vasiliki Theodorou ◽  
Aikaterini Stefanaki ◽  
Minas Drakos ◽  
Dafne Triantafyllou ◽  
Christos Delidakis

Background: ASC/ASCL proneural transcription factors are oncogenic and exhibit impressive reprogramming and pioneer activities. In both Drosophila and mammals, these factors are central in the early specification of the neural fate, where they act in opposition to Notch signalling. However, the role of ASC on the chromatin during CNS neural stem cells birth remains elusive. Results: We investigated the chromatin changes accompanying neural commitment using an integrative genetics and genomics methodology. We found that ASC factors bind equally strongly to two distinct classes of cis-regulatory elements: open regions remodeled earlier during maternal to zygotic transition by Zelda and Zelda-independent, less accessible regions. Both classes cis-elements exhibit enhanced chromatin accessibility during neural specification and correlate with transcriptional regulation of genes involved in many biological processes necessary for neuroblast function. We identified an ASC-Notch regulated TF network that most likely act as the prime regulators of neuroblast function. Using a cohort of ASC target genes, we report that ASC null neuroblasts are defectively specified, remaining initially stalled, lacking expression of many proneural targets and unable to divide. When they eventually start proliferating, they produce compromised progeny. Generation of lacZ reporter lines driven by proneural-bound elements display enhancer activity within neuroblasts and proneural dependency. Therefore, the partial neuroblast identity seen in the absence of ASC genes is driven by other, proneural-independent, cis-elements. Neuroblast impairment and the late differentiation defects of ASC mutants are corrected by ectodermal induction of individual ASC genes but not by individual members of the TF network downstream of ASC. However, in wild type embryos induction of individual members of this network induces CNS hyperplasia, suggesting that they synergize with the activating function of ASC to establish the chromatin dynamics that promote neural specification. Conclusion: ASC factors bind a large number of enhancers to orchestrate the timely activation of the neural chromatin program during neuroectodermal to neuroblast transition. This early chromatin remodeling is crucial for both neuroblast homeostasis as well as future progeny fidelity.



2020 ◽  
Author(s):  
Amitabh Das ◽  
Xiaobei Wang ◽  
Jessica Kang ◽  
Alyssa Coulter ◽  
Amol C. Shetty ◽  
...  

SUMMARYOsteoclasts (OCs) are bone resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type mice, Ly6Chi and Ly6Cint monocytes are the primary source of OC formation when compared to Ly6C− monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of pre-established transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of IRF8, a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8 deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation.



2017 ◽  
Vol 114 (7) ◽  
pp. E1291-E1300 ◽  
Author(s):  
Sharon R. Grossman ◽  
Xiaolan Zhang ◽  
Li Wang ◽  
Jesse Engreitz ◽  
Alexandre Melnikov ◽  
...  

Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function—including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation.



2021 ◽  
Author(s):  
Arushi Varshney ◽  
Yasuhiro Kyono ◽  
Venkateswaran Ramamoorthi Elangovan ◽  
Collin Wang ◽  
Michael R. Erdos ◽  
...  

Identifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ~20% of which are islet-specific and occur mostly distal to known gene TSSs. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validated the transcriptional enhancer activity for 2,279 of 3,378 (~68%) tested islet CAGE elements (5% FDR). TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting active enhancers at GWAS loci.



2021 ◽  
Author(s):  
Arushi Varshney ◽  
Yasuhiro Kyono ◽  
Venkateswaran Ramamoorthi Elangovan ◽  
Collin Wang ◽  
Michael R. Erdos ◽  
...  

Identifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ~20% of which are islet-specific and occur mostly distal to known gene TSSs. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validated the transcriptional enhancer activity for 2,279 of 3,378 (~68%) tested islet CAGE elements (5% FDR). TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting active enhancers at GWAS loci.



2019 ◽  
Author(s):  
Ryan M. Mulqueen ◽  
Brooke A. DeRosa ◽  
Casey A. Thornton ◽  
Zeynep Sayar ◽  
Kristof A. Torkenczy ◽  
...  

AbstractDevelopment is a complex process that requires the precise modulation of regulatory gene networks controlled through dynamic changes in the epigenome. Single-cell-omic technologies provide an avenue for understanding the mechanisms of these processes by capturing the progression of epigenetic cell states during the course of cellular differentiation using in vitro or in vivo models1. However, current single-cell epigenomic methods are limited in the information garnered per individual cell, which in turn limits their ability to measure chromatin dynamics and state shifts. Single-cell combinatorial indexing (sci-) has been applied as a strategy for identifying single-cell-omic originating libraries and removes the necessity of single-cell, single-compartment chemistry2. Here, we report an improved sci-assay for transposase accessible chromatin by sequencing (ATAC-seq), which utilizes the small molecule inhibitor Pitstop 2™ (scip-ATAC-seq)3. We demonstrate that these improvements, which theoretically could be applied to any in situ transposition method for single-cell library preparation, significantly increase the ability of transposase to enter the nucleus and generate highly complex single-cell libraries, without altering biological signal. We applied sci-ATAC-seq and scip-ATAC-seq to characterize the chromatin dynamics of developing forebrain-like organoids, an in vitro model of human corticogenesis4. Using these data, we characterized novel putative regulatory elements, compared the epigenome of the organoid model to human cortex data, generated a high-resolution pseudotemporal map of chromatin accessibility through differentiation, and measured epigenomic changes coinciding with a neurogenic fate decision point. Finally, we combined transcription factor motif accessibility with gene activity (GA) scores to directly observe the dynamics of complex regulatory programs that regulate neurogenesis through developmental pseudotime. Overall, scip-ATAC-seq increases information content per cell and bolsters the potential for future single-cell studies into complex developmental processes.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pâmela A. Alexandre ◽  
Marina Naval-Sánchez ◽  
Moira Menzies ◽  
Loan T. Nguyen ◽  
Laercio R. Porto-Neto ◽  
...  

Abstract Background Spatiotemporal changes in the chromatin accessibility landscape are essential to cell differentiation, development, health, and disease. The quest of identifying regulatory elements in open chromatin regions across different tissues and developmental stages is led by large international collaborative efforts mostly focusing on model organisms, such as ENCODE. Recently, the Functional Annotation of Animal Genomes (FAANG) has been established to unravel the regulatory elements in non-model organisms, including cattle. Now, we can transition from prediction to validation by experimentally identifying the regulatory elements in tropical indicine cattle. The identification of regulatory elements, their annotation and comparison with the taurine counterpart, holds high promise to link regulatory regions to adaptability traits and improve animal productivity and welfare. Results We generate open chromatin profiles for liver, muscle, and hypothalamus of indicine cattle through ATAC-seq. Using robust methods for motif discovery, motif enrichment and transcription factor binding sites, we identify potential master regulators of the epigenomic profile in these three tissues, namely HNF4, MEF2, and SOX factors, respectively. Integration with transcriptomic data allows us to confirm some of their target genes. Finally, by comparing our results with Bos taurus data we identify potential indicine-specific open chromatin regions and overlaps with indicine selective sweeps. Conclusions Our findings provide insights into the identification and analysis of regulatory elements in non-model organisms, the evolution of regulatory elements within two cattle subspecies as well as having an immediate impact on the animal genetics community in particular for a relevant productive species such as tropical cattle.



2019 ◽  
Vol 11 (7) ◽  
pp. 1813-1828 ◽  
Author(s):  
Pei-Chen Peng ◽  
Pierre Khoueiry ◽  
Charles Girardot ◽  
James P Reddington ◽  
David A Garfield ◽  
...  

Abstract Transcription factor (TF) binding is determined by sequence as well as chromatin accessibility. Although the role of accessibility in shaping TF-binding landscapes is well recorded, its role in evolutionary divergence of TF binding, which in turn can alter cis-regulatory activities, is not well understood. In this work, we studied the evolution of genome-wide binding landscapes of five major TFs in the core network of mesoderm specification, between Drosophila melanogaster and Drosophila virilis, and examined its relationship to accessibility and sequence-level changes. We generated chromatin accessibility data from three important stages of embryogenesis in both Drosophila melanogaster and Drosophila virilis and recorded conservation and divergence patterns. We then used multivariable models to correlate accessibility and sequence changes to TF-binding divergence. We found that accessibility changes can in some cases, for example, for the master regulator Twist and for earlier developmental stages, more accurately predict binding change than is possible using TF-binding motif changes between orthologous enhancers. Accessibility changes also explain a significant portion of the codivergence of TF pairs. We noted that accessibility and motif changes offer complementary views of the evolution of TF binding and developed a combined model that captures the evolutionary data much more accurately than either view alone. Finally, we trained machine learning models to predict enhancer activity from TF binding and used these functional models to argue that motif and accessibility-based predictors of TF-binding change can substitute for experimentally measured binding change, for the purpose of predicting evolutionary changes in enhancer activity.



2019 ◽  
Author(s):  
Arushi Varshney ◽  
Yasuhiro Kyono ◽  
Venkateswaran Ramamoorthi Elangovan ◽  
Collin Wang ◽  
Michael R. Erdos ◽  
...  

AbstractIdentifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ~20% of which are islet-specific and occur mostly distal to known gene TSSs. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validate transcriptional enhancer activity (5% FDR) for 2,279 of 3,378 (~68%) tested islet CAGE elements. TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting functional enhancers at GWAS loci.



Sign in / Sign up

Export Citation Format

Share Document