scholarly journals Improved single-cell ATAC-seq reveals chromatin dynamics of in vitro corticogenesis

2019 ◽  
Author(s):  
Ryan M. Mulqueen ◽  
Brooke A. DeRosa ◽  
Casey A. Thornton ◽  
Zeynep Sayar ◽  
Kristof A. Torkenczy ◽  
...  

AbstractDevelopment is a complex process that requires the precise modulation of regulatory gene networks controlled through dynamic changes in the epigenome. Single-cell-omic technologies provide an avenue for understanding the mechanisms of these processes by capturing the progression of epigenetic cell states during the course of cellular differentiation using in vitro or in vivo models1. However, current single-cell epigenomic methods are limited in the information garnered per individual cell, which in turn limits their ability to measure chromatin dynamics and state shifts. Single-cell combinatorial indexing (sci-) has been applied as a strategy for identifying single-cell-omic originating libraries and removes the necessity of single-cell, single-compartment chemistry2. Here, we report an improved sci-assay for transposase accessible chromatin by sequencing (ATAC-seq), which utilizes the small molecule inhibitor Pitstop 2™ (scip-ATAC-seq)3. We demonstrate that these improvements, which theoretically could be applied to any in situ transposition method for single-cell library preparation, significantly increase the ability of transposase to enter the nucleus and generate highly complex single-cell libraries, without altering biological signal. We applied sci-ATAC-seq and scip-ATAC-seq to characterize the chromatin dynamics of developing forebrain-like organoids, an in vitro model of human corticogenesis4. Using these data, we characterized novel putative regulatory elements, compared the epigenome of the organoid model to human cortex data, generated a high-resolution pseudotemporal map of chromatin accessibility through differentiation, and measured epigenomic changes coinciding with a neurogenic fate decision point. Finally, we combined transcription factor motif accessibility with gene activity (GA) scores to directly observe the dynamics of complex regulatory programs that regulate neurogenesis through developmental pseudotime. Overall, scip-ATAC-seq increases information content per cell and bolsters the potential for future single-cell studies into complex developmental processes.


2021 ◽  
Author(s):  
Antonio Lentini ◽  
Huaitao Cheng ◽  
Joyce Carol Noble ◽  
Natali Papanicolaou ◽  
Christos Coucoravas ◽  
...  

X-chromosome inactivation (XCI) and upregulation (XCU) are the major opposing chromosome-wide modes of gene regulation that collectively achieve dosage compensation in mammals, but the regulatory link between the two remains elusive. Here, we use allele-resolved single-cell RNA-seq combined with chromatin accessibility profiling to finely dissect the separate effects of XCI and XCU on RNA levels during mouse development. We uncover that balanced X dosage is flexibly attained through expression tuning by XCU in a sex- and lineage-specific manner along varying degrees of XCI and across developmental and cellular states. Male blastomeres achieve XCU upon zygotic genome activation while females experience two distinct waves of XCU, upon imprinted- and random XCI, and ablation of Xist impedes female XCU. Contrary to widely established models of mammalian dosage compensation, naïve female embryonic cells carrying two active X chromosomes do not exhibit upregulation but express both alleles at basal level, yet collectively exceeding the RNA output of a single hyperactive allele. We show, in vivo and in vitro, that XCU is kinetically driven by X-specific modulation of transcriptional burst frequency, coinciding with increased compartmentalization of the hyperactive allele. Altogether, our data provide unprecedented insights into the dynamics of mammalian XCU, prompting a revised model of the chain in events of allelic regulation by XCU and XCI in unitedly achieving stable cellular levels of X-chromosome transcripts.



eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Paul Guilhamon ◽  
Charles Chesnelong ◽  
Michelle M Kushida ◽  
Ana Nikolic ◽  
Divya Singhal ◽  
...  

Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as Glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.



2001 ◽  
Vol 183 (14) ◽  
pp. 4190-4201 ◽  
Author(s):  
Luı́s Jaime Mota ◽  
Leonor Morais Sarmento ◽  
Isabel de Sá-Nogueira

ABSTRACT The proteins involved in the utilization of l-arabinose by Bacillus subtilis are encoded by thearaABDLMNPQ-abfA metabolic operon and by thearaE/araR divergent unit. Transcription from the ara operon, araE transport gene, andaraR regulatory gene is induced by l-arabinose and negatively controlled by AraR. The purified AraR protein binds cooperatively to two in-phase operators within thearaABDLMNPQ-abfA (ORA1 and ORA2) and araE (ORE1 and ORE2) promoters and noncooperatively to a single operator in the araR (ORR3) promoter region. Here, we have investigated how AraR controls transcription from theara regulon in vivo. A deletion analysis of theara promoters region showed that the five AraR binding sites are the key cis-acting regulatory elements of their corresponding genes. Furthermore, ORE1-ORE2 and ORR3 are auxiliary operators for the autoregulation ofaraR and the repression of araE, respectively. Analysis of mutations designed to prevent cooperative binding of AraR showed that in vivo repression of the ara operon requires communication between repressor molecules bound to two properly spaced operators. This communication implicates the formation of a small loop by the intervening DNA. In an in vitro transcription system, AraR alone sufficed to abolish transcription from thearaABDLMNPQ-abfA operon and araEpromoters, strongly suggesting that it is the major protein involved in the repression mechanism of l-arabinose-inducible expression in vivo. The ara regulon is an example of how the architecture of the promoters is adapted to respond to the particular characteristics of the system, resulting in a tight and flexible control.



1992 ◽  
Vol 12 (1) ◽  
pp. 337-346
Author(s):  
I B Richardson ◽  
M E Katz ◽  
M J Hynes

The lam locus of Aspergillus nidulans consists of two divergently transcribed genes, lamA and lamB, involved in the utilization of lactams such as 2-pyrrolidinone. Both genes are under the control of the positive regulatory gene amdR and are subject to carbon and nitrogen metabolite repression. The lamB gene and the region between the two genes have been sequenced, and the start points of transcription have been determined. Within the lam locus are two sequences with homology to elements, required for AmdR regulation, found in the 5' regions of the coregulated genes amdS and gatA. In vitro and in vivo assays were used to investigate the lam and gatA regulatory elements. One of the three gatA elements and one of the two lam elements were shown to bind AmdR protein in vivo and activate transcription. With a gel shift mobility assay, in vitro binding of AmdR protein to the functional gatA element was detected. Both the functional gatA and lam boxes contain within them a CAAT sequence. In vitro binding analysis indicates that a CCAAT-specific factor(s) binds at these sequences, adjacent to or overlapping the AmdR protein-binding site.



1992 ◽  
Vol 12 (1) ◽  
pp. 337-346 ◽  
Author(s):  
I B Richardson ◽  
M E Katz ◽  
M J Hynes

The lam locus of Aspergillus nidulans consists of two divergently transcribed genes, lamA and lamB, involved in the utilization of lactams such as 2-pyrrolidinone. Both genes are under the control of the positive regulatory gene amdR and are subject to carbon and nitrogen metabolite repression. The lamB gene and the region between the two genes have been sequenced, and the start points of transcription have been determined. Within the lam locus are two sequences with homology to elements, required for AmdR regulation, found in the 5' regions of the coregulated genes amdS and gatA. In vitro and in vivo assays were used to investigate the lam and gatA regulatory elements. One of the three gatA elements and one of the two lam elements were shown to bind AmdR protein in vivo and activate transcription. With a gel shift mobility assay, in vitro binding of AmdR protein to the functional gatA element was detected. Both the functional gatA and lam boxes contain within them a CAAT sequence. In vitro binding analysis indicates that a CCAAT-specific factor(s) binds at these sequences, adjacent to or overlapping the AmdR protein-binding site.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emilia Solomon ◽  
Katie Davis-Anderson ◽  
Blake Hovde ◽  
Sofiya Micheva-Viteva ◽  
Jennifer Foster Harris ◽  
...  

Abstract Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.



2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
Ana Nikolic ◽  
Anna Bobyn ◽  
Katrina Ellestad ◽  
Xueqing Lun ◽  
Michael Johnston ◽  
...  

Abstract Glioblastoma cells with the crucial stemness property of self-renewal constitute therapy-resistant reservoirs that seed tumor relapse. Effective targeting of these cells in clinical settings has been hampered by their relative quiescence, which invalidates the cell replication bias of most current treatments. Furthermore, although their dependence on specific chromatin and transcriptional states for the maintenance of stemness programs has been proposed as a vulnerability, these nuclear programs have been challenging to target pharmaceutically. Therefore the identification of targetable chromatin paradigms regulating self-renewal would represent a significant advancement for this incurable malignancy. Here we report a new role for the histone variant macroH2A2 in modulating a targetable epigenetic network of stemness in glioblastoma. By integrating transcriptomic, bulk and single-cell epigenomic datasets we generated from patient-derived models and surgical specimens, we show that macroH2A2 represses a transcriptional network of stemness through direct regulation of chromatin accessibility at enhancer elements. Functional assays in vitro and in vivo further showcase that macroH2A2 antagonizes self-renewal and stemness in glioblastoma preclinical models. In agreement with our experimental findings, high expression of macroH2A2 is a positive prognostic factor in clinical glioblastoma cohorts. Reasoning that increasing macroH2A2 levels could be an effective strategy to repress stemness programs and ameliorate patient outcome, we embarked on a screen to identify compounds that could elevate macroH2A2 levels. We report that an inhibitor of the chromatin remodeler Menin increases macroH2A2 levels, which in turn repress self-renewal. Additionally, we provide evidence that Menin inhibition induces viral mimicry programs and the demise of glioblastoma cells. Menin inhibition is being tested in clinical trials for blood malignancies (NCT04067336). Our preclinical work therefore reveals a novel and central role for macroH2A2 in an epigenetic network of stemness and suggests new clinical approaches for glioblastoma.



1996 ◽  
Vol 313 (3) ◽  
pp. 745-752 ◽  
Author(s):  
Françoise LEVAVASSEUR ◽  
Jocelyne LIÉTARD ◽  
Kohei OGAWA ◽  
Nathalie THÉRET ◽  
Peter D. BURBELO ◽  
...  

Laminin γ1 chain is present in all basement membranes and is expressed at high levels in various diseases, such as hepatic fibrosis. We have identified cis- and trans-acting elements involved in the regulation of this gene in normal rat liver, as well as in hepatocyte primary cultures and hepatoma cell lines. Northern-blot analyses showed that laminin γ1 mRNA was barely detectable in freshly isolated hepatocytes and expressed at high levels in hepatocyte primary cultures, as early as 4 h after liver dissociation. Actinomycin D and cycloheximide treatment in vivo and in vitro indicated that laminin γ1 overexpression in cultured hepatocytes was under the control of transcriptional mechanisms. Transfection of deletion mutants of the 5´ flanking region of murine LAMC1 gene in hepatoma cells that constitutively express laminin γ1 indicated that regulatory elements were located between -594 bp and -94 bp. This segment included GC- and CTC-containing motifs. Gel-shift analyses showed that two complexes were resolved with different affinity for the CTC sequence depending on the location of the GC box. The pattern of complex formation with nuclear factors from freshly isolated and cultured hepatocytes was different from that obtained with total liver and similar to that with hepatoma cells. Southwestern analysis indicated that several polypeptides bound the CTC-rich sequence. Affinity chromatography demonstrated that a Mr 60000 polypeptide was a major protein binding to the CTC motif. This polypeptide is probably involved in the transcriptional activation of various proto-oncogenes and extracellular matrix genes that are expressed at high levels in both hepatoma cells and early hepatocyte cultures.



2000 ◽  
Vol 164 (6) ◽  
pp. 3047-3055 ◽  
Author(s):  
Dragana Jankovic ◽  
Marika C. Kullberg ◽  
Nancy Noben-Trauth ◽  
Patricia Caspar ◽  
William E. Paul ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document