scholarly journals Positively Selected Enhancer Elements Endow Tumor Cells with Metastatic Competence

2017 ◽  
Author(s):  
James J. Morrow ◽  
Ian Bayles ◽  
Alister PW Funnell ◽  
Tyler E. Miller ◽  
Alina Saiakhova ◽  
...  

AbstractMetastasis results from a complex set of traits acquired by tumor cells, distinct from those necessary for tumorigenesis. Here, we investigate the contribution of enhancer elements to the metastatic phenotype of osteosarcoma. Through epigenomic profiling, we identify substantial differences in enhancer activity between primary and metastatic tumors in human patients as well as nearisogenic pairs of high and low lung-metastatic osteosarcoma cells. We term these regions Metastatic Variant Enhancer Loci (Met-VELs). We demonstrate that these Met-VELs drive coordinated waves of gene expression during metastatic colonization of the lung. Met-VELs cluster non-randomly, indicating that activity of these enhancers and their associated gene targets are positively selected. As evidence of this causal association, osteosarcoma lung metastasis is inhibited by global interruptions of Met-VEL-associated gene expression via pharmacologic BET inhibition, by knockdown of AP-1 transcription factors that occupy Met-VELs, and by knockdown or functional inhibition of individual genes activated by Met-VELs, such as F3. We further show that genetic deletion of a single Met-VEL at the F3 locus blocks metastatic cell outgrowth in the lung. These findings indicate that Met-VELs and the genes they regulate play a functional role in metastasis and may be suitable targets for anti-metastatic therapies.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jonathan D. Licht ◽  
Richard L. Bennett

Abstract Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


2006 ◽  
Vol 5 (11) ◽  
pp. 1457-1461 ◽  
Author(s):  
Hui-Zhong Zhang ◽  
Yan Wang ◽  
Ping Gao ◽  
Fang Lin ◽  
Li Liu ◽  
...  

1994 ◽  
Vol 2 (1-2) ◽  
pp. 162
Author(s):  
I. Putscher ◽  
H. Haber ◽  
J. Fickel ◽  
A. Winkler ◽  
M. Melzig

Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6849-6859 ◽  
Author(s):  
Kathryn T. Bieging ◽  
Kamonwan Fish ◽  
Subbarao Bondada ◽  
Richard Longnecker

AbstractThe link between EBV infection and Burkitt lymphoma (BL) is strong, but the mechanism underlying that link has been elusive. We have developed a mouse model for EBV-associated BL in which LMP2A, an EBV latency protein, and MYC are expressed in B cells. Our model has demonstrated the ability of LMP2A to accelerate tumor onset, increase spleen size, and bypass p53 inactivation. Here we describe the results of total gene expression analysis of tumor and pretumor B cells from our transgenic mouse model. Although we see many phenotypic differences and changes in gene expression in pretumor B cells, the transcriptional profiles of tumor cells from LMP2A/λ-MYC and λ-MYC mice are strikingly similar, with fewer than 20 genes differentially expressed. We evaluated the functional significance of one of the most interesting differentially expressed genes, Egr1, and found that it was not required for acceleration of tumor onset by LMP2A. Our studies demonstrate the remarkable ability of LMP2A to affect the pretumor B-cell phenotype and tumorigenesis without substantially altering gene expression in tumor cells.


1992 ◽  
Vol 12 (3) ◽  
pp. 1202-1208
Author(s):  
R A Graves ◽  
P Tontonoz ◽  
B M Spiegelman

The molecular basis of adipocyte-specific gene expression is not well understood. We have previously identified a 518-bp enhancer from the adipocyte P2 gene that stimulates adipose-specific gene expression in both cultured cells and transgenic mice. In this analysis of the enhancer, we have defined and characterized a 122-bp DNA fragment that directs differentiation-dependent gene expression in cultured preadipocytes and adipocytes. Several cis-acting elements have been identified and shown by mutational analysis to be important for full enhancer activity. One pair of sequences, ARE2 and ARE4, binds a nuclear factor (ARF2) present in extracts derived from many cell types. Multiple copies of these elements stimulate gene expression from a minimal promoter in preadipocytes, adipocytes, and several other cultured cell lines. A second pair of elements, ARE6 and ARE7, binds a separate factor (ARF6) that is detected only in nuclear extracts derived from adipocytes. The ability of multimers of ARE6 or ARE7 to stimulate promoter activity is strictly adipocyte specific. Mutations in the ARE6 sequence greatly reduce the activity of the 518-bp enhancer. These data demonstrate that several cis- and trans-acting components contribute to the activity of the adipocyte P2 enhancer and suggest that ARF6, a novel differentiation-dependent factor, may be a key regulator of adipogenic gene expression.


Sign in / Sign up

Export Citation Format

Share Document