scholarly journals Euplotid: A quantized geometric model of the eukaryotic cell

2017 ◽  
Author(s):  
Diego Borges-Rivera

Life continues to shock and amaze us, reminding us that truth is far stranger than fiction. http://Euplotid.io is a quantized, geometric model of the eukaryotic cell, an attempt at quantifying the incredible complexity that gives rise to a living cell by beginning from the smallest unit, a quanta. Starting from the very bottom we are able to build the pieces which when hierarchically and combinatorially combined produce the emergent complex behavior that even a single celled organism can show. Euplotid is composed of a set of quantized geometric 3D building blocks and constantly evolving dockerized bioinformatic pipelines enabling a user to build and interact with the local regulatory architecture of every gene starting from DNA-interactions, chromatin accessibility, and RNA-sequencing. Reads are quantified using the latest computational tools and the results are normalized, quality-checked, and stored. The local regulatory architecture of each gene is built using a Louvain based graph partitioning algorithm parameterized by the chromatin extrusion model and CTCF-CTCF interactions. Cis-Regulatory Elements are defined using chromatin accessibility peaks which are mapped to Transcriptional Start Sites based on inclusion within the same neighborhood. Deep Neural Networks are trained in order to provide a statistical model mimicking transcription factor binding, giving the ability to identify all Transcription Factors within a given chromatin accessibility peak. By in-silico mutating and re-applying the neural network we are able to gauge the impact of a transition mutation on the binding of any transcription factor. The annotated output can be visualized in a variety of 1D, 2D, 3D and 4D ways overlaid with existing bodies of knowledge such as GWAS results or PDB structures. Once a particular CRE of interest has been identified a Base Editor mediated transition mutation can then be performed in a relevant model for further study.

2019 ◽  
Author(s):  
Jessica E. Davis ◽  
Kimberly D. Insigne ◽  
Eric M. Jones ◽  
Quinn B Hastings ◽  
Sriram Kosuri

AbstractIn eukaryotes, transcription factors orchestrate gene expression by binding to TF-Binding Sites (TFBSs) and localizing transcriptional co-regulators and RNA Polymerase II to cis-regulatory elements. The strength and regulation of transcription can be modulated by a variety of factors including TFBS composition, TFBS affinity and number, distance between TFBSs, distance of TFBSs to transcription start sites, and epigenetic modifications. We still lack a basic comprehension of how such variables shaping cis-regulatory architecture culminate in quantitative transcriptional responses. Here we explored how such factors determine the transcriptional activity of a model transcription factor, the c-AMP Response Element (CRE) binding protein. We measured expression driven by 4,602 synthetic regulatory elements in a massively parallel reporter assay (MPRA) exploring the impact of CRE number, affinity, distance to the promoter, and spacing between multiple CREs. We found the number and affinity of CREs within regulatory elements largely determines overall expression, and this relationship is shaped by the proximity of each CRE to the downstream promoter. In addition, while we observed expression periodicity as the CRE distance to the promoter varied, the spacing between multiple CREs altered this periodicity. Finally, we compare library expression between an episomal MPRA and a new, genomically-integrated MPRA in which a single synthetic regulatory element is present per cell at a defined locus. We observe that these largely recapitulate each other although weaker, non-canonical CREs exhibited greater activity in the genomic context.


2019 ◽  
Author(s):  
Regan J. Hayward ◽  
James W. Marsh ◽  
Michael S. Humphrys ◽  
Wilhelmina M. Huston ◽  
Garry S.A. Myers

AbstractChlamydia are Gram-negative, obligate intracellular bacterial pathogens responsible for a broad spectrum of human and animal diseases. In humans, Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and is the causative agent of trachoma (infectious blindness) in disadvantaged populations. Over the course of its developmental cycle, Chlamydia extensively remodels its intracellular niche and parasitises the host cell for nutrients, with substantial resulting changes to the host cell transcriptome and proteome. However, little information is available on the impact of chlamydial infection on the host cell epigenome and global gene regulation. Regions of open eukaryotic chromatin correspond to nucleosome-depleted regions, which in turn are associated with regulatory functions and transcription factor binding. We applied Formaldehyde-Assisted Isolation of Regulatory Elements enrichment followed by sequencing (FAIRE-Seq) to generate temporal chromatin maps of C. trachomatis-infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected both conserved and distinct temporal changes to genome-wide chromatin accessibility associated with C. trachomatis infection. The observed differentially accessible chromatin regions, including several Clusters of Open Regulatory Elements (COREs) and temporally-enriched sets of transcription factors, may help shape the host cell response to infection. These regions and motifs were linked to genomic features and genes associated with immune responses, re-direction of host cell nutrients, intracellular signaling, cell-cell adhesion, extracellular matrix, metabolism and apoptosis. This work provides another perspective to the complex response to chlamydial infection, and will inform further studies of transcriptional regulation and the epigenome in Chlamydia-infected human cells and tissues


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 436-436 ◽  
Author(s):  
Christopher J. Ott ◽  
Alexander J. Federation ◽  
Siddha Kasar ◽  
Josephine L. Klitgaard ◽  
Stacey M. Fernandes ◽  
...  

Abstract Genome sequencing efforts of chronic lymphocytic leukemia have revealed mutations that disrupt protein-coding elements of the genome (Puente et al, 2011; Wang et al, 2011; Landau et al, 2013). Recently, comprehensive whole-genome sequencing efforts have begun to reveal the genetic aberrations that occur outside of protein-coding exons, many that may perturb gene regulatory sites (Puente et al, 2015). These include enhancer elements that make physical contact with gene promoters to regulate gene expression in a cell-type specific manner. While mutations certainly promote CLL leukemogenesis, epigenomic alterations may also play an important role in facilitating disease progression and maintenance by inducing the gene expression aberrations that have long been observed in CLL. Epigenomic alterations include chromatin structure changes that facilitate altered transcription and chromatin factor recruitment to regulatory elements. While comprehensive genome-wide DNA methylation studies have been performed on human cancers and normal cell counterparts including CLL, other comprehensive studies of cancer epigenomes have been lacking. We have completed an analysis of chromatin structures in a cohort of primary chronic lymphocytic leukemia (CLL) samples with comparisons to normal CD19+ B lymphocytes (n = 18 CLL samples, n = 5 normal B lymphocyte samples). We used chromatin accessibility assays (ATAC-seq) and genome-wide enhancer mapping (H3K27ac ChIP-seq) to comprehensively define the transcriptionally active chromatin landscape of CLL. We have discovered greater than 15,000 novel regulatory elements when compared to previously annotated regulatory elements. Moreover, sites within the loci of several hundred genes were found to have large regions of gained chromatin accessibility and H3K27 acetylation, revealing the appearance of aberrant enhancer activity. These gained enhancer elements correspond with increased gene expression and are found at gene loci such as LEF1, PLCG1, CTLA4, and ITGB1. We have also systematically identified the super-enhancers of CLL - large complex regulatory regions that possess unique tissue-specific regulatory capabilities. Many of these super-enhancers are found in normal B lymphocytes, yet the super-enhancer at the ITGB1 and LEF1 loci are CLL-specific and may be considered to facilitate leukemia-specific expression. We have found CLL-specific enhancers are also significantly associated with annotated CLL risk variants, and have identified enhancer-associated SNPs found within CLL-risk loci predicted to disrupt transcription factor binding sites. These include SNPs at the IRF8 and LEF1 locithat lead to the creation and destruction of SMAD4 and RXRA binding sites, respectively. Additionally, we have analyzed whole-genome sequencing data from a subset of our sample cohort. Mutational hotspots in the CXCR4 and BACH2 promoters occur within open, acetylated regions. Moreover, we discover recurrent mutations in enhancers of the ETS1 and ST6GAL1 locus that have not been previously annotated. Using a transcription factor network modeling approach, we used these global chromatin structure characteristics to determine networks that are highly active in CLL. We find that transcription factors such as NFATc1, E2F5, and NR3C2 are among the most interconnected transcription factors of the CLL genome, and their connectivity is significantly higher in CLL cells compared to normal B cells. In contrast, network profiling of CLL cells predicts loss of MXI1 connectivity, a negative regulator of the MYC oncogene. By treating cells with specific pharmacological inhibitors of NFAT family members including cyclosporin and FK506, we are able to reduce NFAT-mediated network connectivity, resulting in a selective loss of NFAT-bound enhancers. This leads to CLL cell death in vitro of both cell lines and primary CLL patient samples. Our results reveal the unique chromatin structure landscape of CLL for the first time, and identify the CLL-specific enhancer elements that confer the transcriptional dysregulation that has long been observed in this disease. Use of these chromatin structure analyses and enhancer landscapes has allowed us to construct the intrinsic transcription factor network of CLL, and determine a particular dependency on NFAT signaling for cell survival. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 295 (26) ◽  
pp. 8725-8735
Author(s):  
Stephanie L. Safgren ◽  
Rachel L. O. Olson ◽  
Anne M. Vrabel ◽  
Luciana L. Almada ◽  
David L. Marks ◽  
...  

The transcription factor GLI1 (GLI family zinc finger 1) plays a key role in the development and progression of multiple malignancies. To date, regulation of transcriptional activity at target gene promoters is the only molecular event known to underlie the oncogenic function of GLI1. Here, we provide evidence that GLI1 controls chromatin accessibility at distal regulatory regions by modulating the recruitment of SMARCA2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 2) to these elements. We demonstrate that SMARCA2 endogenously interacts with GLI1 and enhances its transcriptional activity. Mapping experiments indicated that the C-terminal transcriptional activation domain of GLI1 and SMARCA2's central domains, including its ATPase motif, are required for this interaction. Interestingly, similar to SMARCA2, GLI1 overexpression increased chromatin accessibility, as indicated by results of the micrococcal nuclease assay. Further, results of assays for transposase-accessible chromatin with sequencing (ATAC-seq) after GLI1 knockdown supported these findings, revealing that GLI1 regulates chromatin accessibility at several regions distal to gene promoters. Integrated RNA-seq and ATAC-seq data analyses identified a subset of differentially expressed genes located in cis to these regulated chromatin sites. Finally, using the GLI1-regulated gene HHIP (Hedgehog-interacting protein) as a model, we demonstrate that GLI1 and SMARCA2 co-occupy a distal chromatin peak and that SMARCA2 recruitment to this HHIP putative enhancer requires intact GLI1. These findings provide insights into how GLI1 controls gene expression in cancer cells and may inform approaches targeting this oncogenic transcription factor to manage malignancies.


2020 ◽  
Author(s):  
Swann Floc’hlay ◽  
Emily Wong ◽  
Bingqing Zhao ◽  
Rebecca R. Viales ◽  
Morgane Thomas-Chollier ◽  
...  

AbstractPrecise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequence, and chromatin. How DNA mutations affecting any one of these regulatory ‘layers’ is buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses, at three embryonic stages, yielding a comprehensive dataset of 240 samples spanning multiple regulatory layers. Genetic variation in cis-regulatory elements is common, highly heritable, and surprisingly consistent in its effects across embryonic stages. Much of this variation does not propagate to gene expression. When it does, it acts through H3K4me3 or alternatively through chromatin accessibility and H3K27ac. The magnitude and evolutionary impact of mutations is influenced by a genes’ regulatory complexity (i.e. enhancer number), with transcription factors being most robust to cis-acting, and most influenced by trans-acting, variation. Overall, the impact of genetic variation on regulatory phenotypes appears context-dependent even within the constraints of embryogenesis.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Ren-Dong Hu ◽  
Wen Zhang ◽  
Liang Li ◽  
Zu-Qi Zuo ◽  
Min Ma ◽  
...  

AbstractActivation of adipose tissue macrophages (ATMs) contributes to chronic inflammation and insulin resistance in obesity. However, the transcriptional regulatory machinery involved in ATM activation during the development of obesity is not fully understood. Here, we profiled the chromatin accessibility of blood monocytes and ATMs from obese and lean mice using assay for transposase-accessible chromatin sequencing (ATAC-seq). We found that monocytes and ATMs from obese and lean mice exhibited distinct chromatin accessibility status. There are distinct regulatory elements that are specifically associated with monocyte or ATM activation in obesity. We also discovered several transcription factors that may regulate monocyte and ATM activation in obese mice, specifically a predicted transcription factor named ETS translocation variant 5 (ETV5). The expression of ETV5 was significantly decreased in ATMs from obese mice and its downregulation was mediated by palmitate stimulation. The decrease in ETV5 expression resulted in macrophage activation. Our results also indicate that ETV5 suppresses endoplasmic reticulum (ER) stress and Il6 expression in macrophages. Our work delineates the changes in chromatin accessibility in monocytes and ATMs during obesity, and identifies ETV5 as a critical transcription factor suppressing ATM activation, suggesting its potential use as a therapeutic target in obesity-related chronic inflammation.


Blood ◽  
2022 ◽  
Author(s):  
Leif Ludwig ◽  
Caleb A Lareau ◽  
Erik L. Bao ◽  
Nan Liu ◽  
Taiju Utsugisawa ◽  
...  

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Priscillia Lhoumaud ◽  
Gunjan Sethia ◽  
Franco Izzo ◽  
Theodore Sakellaropoulos ◽  
Valentina Snetkova ◽  
...  

AbstractActivation of regulatory elements is thought to be inversely correlated with DNA methylation levels. However, it is difficult to determine whether DNA methylation is compatible with chromatin accessibility or transcription factor (TF) binding if assays are performed separately. We developed a fast, low-input, low sequencing depth method, EpiMethylTag, that combines ATAC-seq or ChIP-seq (M-ATAC or M-ChIP) with bisulfite conversion, to simultaneously examine accessibility/TF binding and methylation on the same DNA. Here we demonstrate that EpiMethylTag can be used to study the functional interplay between chromatin accessibility and TF binding (CTCF and KLF4) at methylated sites.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Regan J. Hayward ◽  
James W. Marsh ◽  
Michael S. Humphrys ◽  
Wilhelmina M. Huston ◽  
Garry S. A. Myers

Abstract Chlamydia are Gram-negative, obligate intracellular bacterial pathogens responsible for a broad spectrum of human and animal diseases. In humans, Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and is the causative agent of trachoma (infectious blindness) in disadvantaged populations. Over the course of its developmental cycle, Chlamydia extensively remodels its intracellular niche and parasitises the host cell for nutrients, with substantial resulting changes to the host cell transcriptome and proteome. However, little information is available on the impact of chlamydial infection on the host cell epigenome and global gene regulation. Regions of open eukaryotic chromatin correspond to nucleosome-depleted regions, which in turn are associated with regulatory functions and transcription factor binding. We applied formaldehyde-assisted isolation of regulatory elements enrichment followed by sequencing (FAIRE-Seq) to generate temporal chromatin maps of C. trachomatis-infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected both conserved and distinct temporal changes to genome-wide chromatin accessibility associated with C. trachomatis infection. The observed differentially accessible chromatin regions include temporally-enriched sets of transcription factors, which may help shape the host cell response to infection. These regions and motifs were linked to genomic features and genes associated with immune responses, re-direction of host cell nutrients, intracellular signalling, cell–cell adhesion, extracellular matrix, metabolism and apoptosis. This work provides another perspective to the complex response to chlamydial infection, and will inform further studies of transcriptional regulation and the epigenome in Chlamydia-infected human cells and tissues.


2021 ◽  
Author(s):  
Carlos A. Villarroel ◽  
Paulo Canessa ◽  
Macarena Bastias ◽  
Francisco A Cubillos

Saccharomyces cerevisiae rewires its transcriptional output to survive stressful environments, such as nitrogen scarcity under fermentative conditions. Although divergence in nitrogen metabolism has been described among natural yeast populations, the impact of regulatory genetic variants modulating gene expression and nitrogen consumption remains to be investigated. Here, we employed an F1 hybrid from two contrasting S. cerevisiae strains, providing a controlled genetic environment to map cis factors involved in the divergence of gene expression regulation in response to nitrogen scarcity. We used a dual approach to obtain genome-wide allele-specific profiles of chromatin accessibility, transcription factor binding, and gene expression through ATAC-seq and RNA-seq. We observed large variability in allele-specific expression and accessibility between the two genetic backgrounds, with a third of these differences specific to a deficient nitrogen environment. Furthermore, we discovered events of allelic bias in gene expression correlating with allelic bias in transcription factor binding solely under nitrogen scarcity, where the majority of these transcription factors orchestrates the Nitrogen Catabolite Repression regulatory pathway and demonstrates a cis x environment-specific response. Our approach allowed us to find cis variants modulating gene expression, chromatin accessibility and allelic differences in transcription factor binding in response to low nitrogen culture conditions.


Sign in / Sign up

Export Citation Format

Share Document