scholarly journals EpiMethylTag: simultaneous detection of ATAC-seq or ChIP-seq signals with DNA methylation

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Priscillia Lhoumaud ◽  
Gunjan Sethia ◽  
Franco Izzo ◽  
Theodore Sakellaropoulos ◽  
Valentina Snetkova ◽  
...  

AbstractActivation of regulatory elements is thought to be inversely correlated with DNA methylation levels. However, it is difficult to determine whether DNA methylation is compatible with chromatin accessibility or transcription factor (TF) binding if assays are performed separately. We developed a fast, low-input, low sequencing depth method, EpiMethylTag, that combines ATAC-seq or ChIP-seq (M-ATAC or M-ChIP) with bisulfite conversion, to simultaneously examine accessibility/TF binding and methylation on the same DNA. Here we demonstrate that EpiMethylTag can be used to study the functional interplay between chromatin accessibility and TF binding (CTCF and KLF4) at methylated sites.

2019 ◽  
Author(s):  
Priscillia Lhoumaud ◽  
Gunjan Sethia ◽  
Franco Izzo ◽  
Sana Badri ◽  
MacIntosh Cornwell ◽  
...  

AbstractActivation of regulatory elements is thought to be inversely correlated with DNA methylation levels. However, it is difficult to determine whether DNA methylation is compatible with chromatin accessibility or transcription factor (TF) binding if assays are performed separately. We developed a low input, low sequencing depth method, EpiMethylTag that combines ATAC-seq or ChIP-seq (M-ATAC or M-ChIP) with bisulfite conversion, to simultaneously examine accessibility/TF binding and methylation on the same DNA.


2017 ◽  
Author(s):  
Diego Borges-Rivera

Life continues to shock and amaze us, reminding us that truth is far stranger than fiction. http://Euplotid.io is a quantized, geometric model of the eukaryotic cell, an attempt at quantifying the incredible complexity that gives rise to a living cell by beginning from the smallest unit, a quanta. Starting from the very bottom we are able to build the pieces which when hierarchically and combinatorially combined produce the emergent complex behavior that even a single celled organism can show. Euplotid is composed of a set of quantized geometric 3D building blocks and constantly evolving dockerized bioinformatic pipelines enabling a user to build and interact with the local regulatory architecture of every gene starting from DNA-interactions, chromatin accessibility, and RNA-sequencing. Reads are quantified using the latest computational tools and the results are normalized, quality-checked, and stored. The local regulatory architecture of each gene is built using a Louvain based graph partitioning algorithm parameterized by the chromatin extrusion model and CTCF-CTCF interactions. Cis-Regulatory Elements are defined using chromatin accessibility peaks which are mapped to Transcriptional Start Sites based on inclusion within the same neighborhood. Deep Neural Networks are trained in order to provide a statistical model mimicking transcription factor binding, giving the ability to identify all Transcription Factors within a given chromatin accessibility peak. By in-silico mutating and re-applying the neural network we are able to gauge the impact of a transition mutation on the binding of any transcription factor. The annotated output can be visualized in a variety of 1D, 2D, 3D and 4D ways overlaid with existing bodies of knowledge such as GWAS results or PDB structures. Once a particular CRE of interest has been identified a Base Editor mediated transition mutation can then be performed in a relevant model for further study.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 436-436 ◽  
Author(s):  
Christopher J. Ott ◽  
Alexander J. Federation ◽  
Siddha Kasar ◽  
Josephine L. Klitgaard ◽  
Stacey M. Fernandes ◽  
...  

Abstract Genome sequencing efforts of chronic lymphocytic leukemia have revealed mutations that disrupt protein-coding elements of the genome (Puente et al, 2011; Wang et al, 2011; Landau et al, 2013). Recently, comprehensive whole-genome sequencing efforts have begun to reveal the genetic aberrations that occur outside of protein-coding exons, many that may perturb gene regulatory sites (Puente et al, 2015). These include enhancer elements that make physical contact with gene promoters to regulate gene expression in a cell-type specific manner. While mutations certainly promote CLL leukemogenesis, epigenomic alterations may also play an important role in facilitating disease progression and maintenance by inducing the gene expression aberrations that have long been observed in CLL. Epigenomic alterations include chromatin structure changes that facilitate altered transcription and chromatin factor recruitment to regulatory elements. While comprehensive genome-wide DNA methylation studies have been performed on human cancers and normal cell counterparts including CLL, other comprehensive studies of cancer epigenomes have been lacking. We have completed an analysis of chromatin structures in a cohort of primary chronic lymphocytic leukemia (CLL) samples with comparisons to normal CD19+ B lymphocytes (n = 18 CLL samples, n = 5 normal B lymphocyte samples). We used chromatin accessibility assays (ATAC-seq) and genome-wide enhancer mapping (H3K27ac ChIP-seq) to comprehensively define the transcriptionally active chromatin landscape of CLL. We have discovered greater than 15,000 novel regulatory elements when compared to previously annotated regulatory elements. Moreover, sites within the loci of several hundred genes were found to have large regions of gained chromatin accessibility and H3K27 acetylation, revealing the appearance of aberrant enhancer activity. These gained enhancer elements correspond with increased gene expression and are found at gene loci such as LEF1, PLCG1, CTLA4, and ITGB1. We have also systematically identified the super-enhancers of CLL - large complex regulatory regions that possess unique tissue-specific regulatory capabilities. Many of these super-enhancers are found in normal B lymphocytes, yet the super-enhancer at the ITGB1 and LEF1 loci are CLL-specific and may be considered to facilitate leukemia-specific expression. We have found CLL-specific enhancers are also significantly associated with annotated CLL risk variants, and have identified enhancer-associated SNPs found within CLL-risk loci predicted to disrupt transcription factor binding sites. These include SNPs at the IRF8 and LEF1 locithat lead to the creation and destruction of SMAD4 and RXRA binding sites, respectively. Additionally, we have analyzed whole-genome sequencing data from a subset of our sample cohort. Mutational hotspots in the CXCR4 and BACH2 promoters occur within open, acetylated regions. Moreover, we discover recurrent mutations in enhancers of the ETS1 and ST6GAL1 locus that have not been previously annotated. Using a transcription factor network modeling approach, we used these global chromatin structure characteristics to determine networks that are highly active in CLL. We find that transcription factors such as NFATc1, E2F5, and NR3C2 are among the most interconnected transcription factors of the CLL genome, and their connectivity is significantly higher in CLL cells compared to normal B cells. In contrast, network profiling of CLL cells predicts loss of MXI1 connectivity, a negative regulator of the MYC oncogene. By treating cells with specific pharmacological inhibitors of NFAT family members including cyclosporin and FK506, we are able to reduce NFAT-mediated network connectivity, resulting in a selective loss of NFAT-bound enhancers. This leads to CLL cell death in vitro of both cell lines and primary CLL patient samples. Our results reveal the unique chromatin structure landscape of CLL for the first time, and identify the CLL-specific enhancer elements that confer the transcriptional dysregulation that has long been observed in this disease. Use of these chromatin structure analyses and enhancer landscapes has allowed us to construct the intrinsic transcription factor network of CLL, and determine a particular dependency on NFAT signaling for cell survival. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 295 (26) ◽  
pp. 8725-8735
Author(s):  
Stephanie L. Safgren ◽  
Rachel L. O. Olson ◽  
Anne M. Vrabel ◽  
Luciana L. Almada ◽  
David L. Marks ◽  
...  

The transcription factor GLI1 (GLI family zinc finger 1) plays a key role in the development and progression of multiple malignancies. To date, regulation of transcriptional activity at target gene promoters is the only molecular event known to underlie the oncogenic function of GLI1. Here, we provide evidence that GLI1 controls chromatin accessibility at distal regulatory regions by modulating the recruitment of SMARCA2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 2) to these elements. We demonstrate that SMARCA2 endogenously interacts with GLI1 and enhances its transcriptional activity. Mapping experiments indicated that the C-terminal transcriptional activation domain of GLI1 and SMARCA2's central domains, including its ATPase motif, are required for this interaction. Interestingly, similar to SMARCA2, GLI1 overexpression increased chromatin accessibility, as indicated by results of the micrococcal nuclease assay. Further, results of assays for transposase-accessible chromatin with sequencing (ATAC-seq) after GLI1 knockdown supported these findings, revealing that GLI1 regulates chromatin accessibility at several regions distal to gene promoters. Integrated RNA-seq and ATAC-seq data analyses identified a subset of differentially expressed genes located in cis to these regulated chromatin sites. Finally, using the GLI1-regulated gene HHIP (Hedgehog-interacting protein) as a model, we demonstrate that GLI1 and SMARCA2 co-occupy a distal chromatin peak and that SMARCA2 recruitment to this HHIP putative enhancer requires intact GLI1. These findings provide insights into how GLI1 controls gene expression in cancer cells and may inform approaches targeting this oncogenic transcription factor to manage malignancies.


2019 ◽  
Author(s):  
Ricard Argelaguet ◽  
Hisham Mohammed ◽  
Stephen J Clark ◽  
L Carine Stapel ◽  
Christel Krueger ◽  
...  

AbstractFormation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan. Recent studies employing single cell RNA-sequencing have identified major transcriptional changes associated with germ layer specification. Global epigenetic reprogramming accompanies these changes, but the role of the epigenome in regulating early cell fate choice remains unresolved, and the coordination between different epigenetic layers is unclear. Here we describe the first single cell triple-omics map of chromatin accessibility, DNA methylation and RNA expression during the exit from pluripotency and the onset of gastrulation in mouse embryos. We find dynamic dependencies between the different molecular layers, with evidence for distinct modes of epigenetic regulation. The initial exit from pluripotency coincides with the establishment of a global repressive epigenetic landscape, followed by the emergence of local lineage-specific epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and endoderm undergo widespread coordinated epigenetic rearrangements, driven by loss of methylation in enhancer marks and a concomitant increase of chromatin accessibility. In striking contrast, the epigenetic landscape of ectodermal cells is already established in the early epiblast. Hence, regulatory elements associated with each germ layer are either epigenetically primed or epigenetically remodelled prior to overt cell fate decisions during gastrulation, providing the molecular logic for a hierarchical emergence of the primary germ layers.HighlightsFirst map of mouse gastrulation using comprehensive single cell triple-omic analysis.Exit from pluripotency is associated with a global repressive epigenetic landscape, driven by a sharp gain of DNA methylation and a gradual decrease of chromatin accessibility.DNA methylation and chromatin accessibility changes in enhancers, but not in promoters, are associated with germ layer formation.Mesoderm and endoderm enhancers become open and demethylated upon lineage commitment.Ectoderm enhancers are primed in the early epiblast and protected from the global repressive dynamics, supporting a default model of ectoderm commitment in vivo.


2020 ◽  
Author(s):  
Chao Zhang ◽  
Xuebin Zhang ◽  
Yiting Guan ◽  
Xiaoke Huang ◽  
Lijun Zhang ◽  
...  

AbstractChromatin architecture and gene expression profile undergo tremendous reestablishment during senescence. However, the regulatory mechanism between chromatin reconstruction and gene expression in senescence remain elusive. The chromatin accessibility is an excellent perspective to reveal the latent regulatory elements. Thus, we depicted the landscapes of chromatin accessibility and gene expression during HUVECs senescence. We found that chromatin accessibilities are re-distributed during senescence. The senescence related increased accessible regions (IARs) and the decreased accessible regions (DARs) are mainly distributed in distal intergenic regions. The DARs are correlated with the function declines caused by senescence, whereas the IARs are involved in the regulation for senescence program. Moreover, the heterochromatin contributes most of IARs in senescent cells. We identified that the AP-1 transcription factors, especially ATF3 is responsible for driving chromatin accessibility reconstruction in IARs. In particular, DNA methylation is negatively correlated with chromatin accessibility during senescence. AP-1 motifs with low DNA methylation may improve their binding affinity in IARs and further opens the chromatin nearby. Our results described a dynamic landscape of chromatin accessibility whose remodeling contributes to the senescence program. And we identified a cellular senescence regulator, AP-1, which promotes senescence through organizing the accessibility profile in IARs.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Ren-Dong Hu ◽  
Wen Zhang ◽  
Liang Li ◽  
Zu-Qi Zuo ◽  
Min Ma ◽  
...  

AbstractActivation of adipose tissue macrophages (ATMs) contributes to chronic inflammation and insulin resistance in obesity. However, the transcriptional regulatory machinery involved in ATM activation during the development of obesity is not fully understood. Here, we profiled the chromatin accessibility of blood monocytes and ATMs from obese and lean mice using assay for transposase-accessible chromatin sequencing (ATAC-seq). We found that monocytes and ATMs from obese and lean mice exhibited distinct chromatin accessibility status. There are distinct regulatory elements that are specifically associated with monocyte or ATM activation in obesity. We also discovered several transcription factors that may regulate monocyte and ATM activation in obese mice, specifically a predicted transcription factor named ETS translocation variant 5 (ETV5). The expression of ETV5 was significantly decreased in ATMs from obese mice and its downregulation was mediated by palmitate stimulation. The decrease in ETV5 expression resulted in macrophage activation. Our results also indicate that ETV5 suppresses endoplasmic reticulum (ER) stress and Il6 expression in macrophages. Our work delineates the changes in chromatin accessibility in monocytes and ATMs during obesity, and identifies ETV5 as a critical transcription factor suppressing ATM activation, suggesting its potential use as a therapeutic target in obesity-related chronic inflammation.


2021 ◽  
Author(s):  
Jaclyn M Noshay ◽  
Zhikai Liang ◽  
Peng Zhou ◽  
Peter A Crisp ◽  
Alexandre P Marand ◽  
...  

AbstractAccessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43 and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. The number of UMRs and ACRs that can be identified is more accurate when chromatin data is aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are substantially enriched within shared regions, as determined by chromosomal alignments. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only a small number being polymorphic between genotypes. However, the majority of UMRs between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.Article summaryRegions of the genome that have accessible chromatin or unmethylated DNA are often associated with cis-regulatory elements. We assessed chromatin accessibility and DNA methylation in four structurally diverse maize genomes. There are accessible or unmethylated regions within the non-shared portions of the genomes but these features are depleted within these regions. Evaluating the dynamics of methylation and accessibility between genotypes reveals conservation of features, albeit with variable boundaries suggesting some instability of the precise edges of unmethylated regions.


Blood ◽  
2022 ◽  
Author(s):  
Leif Ludwig ◽  
Caleb A Lareau ◽  
Erik L. Bao ◽  
Nan Liu ◽  
Taiju Utsugisawa ◽  
...  

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.


2019 ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

SummaryChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We performed whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel novel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we created an atlas of active enhancers and promoters in benign and malignant gliomas. We explored these elements and intersected with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.SignificanceEpigenetics-driven deregulation of gene expression accompanies cancer development, but its comprehensive characterization in cancer patients is fragmentary. We performed whole-genome profiling of gene expression, open chromatin, histone modifications and DNA-methylation profiles in the same samples from benign and malignant gliomas. Our study provides a first comprehensive atlas of active regulatory elements in gliomas, which allowed identification of the functional enhancers and promoters in patient samples. This comprehensive approach revealed epigenetic patterns influencing gene expression in benign gliomas and a new pathogenic mechanism involving FOXM1-driven network in glioblastomas. This atlas provides a common set of elements for cross-comparisons of existing and new datasets, prompting novel discoveries and better understanding of gliomagenesis.HighlightsWe provide an atlas of cis-regulatory elements active in human gliomasEnhancer-promoter contacts operating in gliomas are revealedDiverse enhancer activation is pronounced in malignant gliomasChromatin loop activates FOXM1-ANXA2R pathological network in glioblastomas.


Sign in / Sign up

Export Citation Format

Share Document