scholarly journals The complete structure of the small subunit processome

2017 ◽  
Author(s):  
Jonas Barandun ◽  
Malik Chaker-Margot ◽  
Mirjam Hunziker ◽  
Kelly R. Molloy ◽  
Brian T. Chait ◽  
...  

The small subunit processome represents the earliest stable precursor of the eukaryotic small ribosomal subunit. Here we present the cryo-EM structure of the Saccharomyces cerevisiae small subunit processome at an overall resolution of 3.8 Å, which provides an essentially complete atomic model of this assembly. In this nucleolar superstructure, 51 ribosome assembly factors and two RNAs encapsulate the 18S rRNA precursor and 15 ribosomal proteins in a state that precedes pre-rRNA cleavage at site A1. Extended flexible proteins are employed to connect distant sites in this particle. Molecular mimicry, steric hindrance as well as protein-and RNA-mediated RNA remodeling are used in a concerted fashion to prevent the premature formation of the central pseudoknot and its surrounding elements within the small ribosomal subunit.

2021 ◽  
Author(s):  
Haina Huang ◽  
Melissa Parker ◽  
Katrin Karbstein

AbstractRibosome assembly is an intricate process, which in eukaryotes is promoted by a large machinery comprised of over 200 assembly factors (AF) that enable the modification, folding, and processing of the ribosomal RNA (rRNA) and the binding of the 79 ribosomal proteins. While some early assembly steps occur via parallel pathways, the process overall is highly hierarchical, which allows for the integration of maturation steps with quality control processes that ensure only fully and correctly assembled subunits are released into the translating pool. How exactly this hierarchy is established, in particular given that there are many instances of RNA substrate “handover” from one highly related AF to another remains to be determined. Here we have investigated the role of Tsr3, which installs a universally conserved modification in the P-site of the small ribosomal subunit late in assembly. Our data demonstrate that Tsr3 separates the activities of the Rio kinases, Rio2 and Rio1, with whom it shares a binding site. By binding after Rio2 dissociation, Tsr3 prevents rebinding of Rio2, promoting forward assembly. After rRNA modification is complete, Tsr3 dissociates, thereby allowing for recruitment of Rio1. Inactive Tsr3 blocks Rio1, which can be rescued using mutants that bypass the requirement for Rio1 activity. Finally, yeast strains lacking Tsr3 randomize the binding of the two kinases, leading to the release of immature ribosomes into the translating pool. These data demonstrate a role for Tsr3 and its modification activity in establishing a hierarchy for the function of the Rio kinases.


RNA ◽  
2022 ◽  
pp. rna.078994.121
Author(s):  
Haina Huang ◽  
Melissa D Parker ◽  
Katrin Karbstein

Ribosome assembly is an intricate process, which in eukaryotes is promoted by a large machinery comprised of over 200 assembly factors (AF) that enable the modification, folding, and processing of the ribosomal RNA (rRNA) and the binding of the 79 ribosomal proteins. While some early assembly steps occur via parallel pathways, the process overall is highly hierarchical, which allows for the integration of maturation steps with quality control processes that ensure only fully and correctly assembled subunits are released into the translating pool. How exactly this hierarchy is established, in particular given that there are many instances of RNA substrate “handover” from one highly related AF to another remains to be determined. Here we have investigated the role of Tsr3, which installs a universally conserved modification in the P-site of the small ribosomal subunit late in assembly. Our data demonstrate that Tsr3 separates the activities of the Rio kinases, Rio2 and Rio1, with whom it shares a binding site. By binding after Rio2 dissociation, Tsr3 prevents rebinding of Rio2, promoting forward assembly. After rRNA modification is complete, Tsr3 dissociates, thereby allowing for recruitment of Rio1. Inactive Tsr3 blocks Rio1, which can be rescued using mutants that bypass the requirement for Rio1 activity. Finally, yeast strains lacking Tsr3 randomize the binding of the two kinases, leading to the release of immature ribosomes into the translating pool. These data demonstrate a role for Tsr3 and its modification activity in establishing a hierarchy for the function of the Rio kinases.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mirjam Hunziker ◽  
Jonas Barandun ◽  
Olga Buzovetsky ◽  
Caitlin Steckler ◽  
Henrik Molina ◽  
...  

Eukaryotic ribosome biogenesis is initiated with the transcription of pre-ribosomal RNA at the 5’ external transcribed spacer, which directs the early association of assembly factors but is absent from the mature ribosome. The subsequent co-transcriptional association of ribosome assembly factors with pre-ribosomal RNA results in the formation of the small subunit processome. Here we show that stable rRNA domains of the small ribosomal subunit can independently recruit their own biogenesis factors in vivo. The final assembly and compaction of the small subunit processome requires the presence of the 5’ external transcribed spacer RNA and all ribosomal RNA domains. Additionally, our cryo-electron microscopy structure of the earliest nucleolar pre-ribosomal assembly - the 5’ external transcribed spacer ribonucleoprotein – provides a mechanism for how conformational changes in multi-protein complexes can be employed to regulate the accessibility of binding sites and therefore define the chronology of maturation events during early stages of ribosome assembly.


2004 ◽  
Vol 3 (6) ◽  
pp. 1619-1626 ◽  
Author(s):  
Kara A. Bernstein ◽  
Jennifer E. G. Gallagher ◽  
Brianna M. Mitchell ◽  
Sander Granneman ◽  
Susan J. Baserga

ABSTRACT The small-subunit (SSU) processome is a large ribonucleoprotein required for the biogenesis of the 18S rRNA and likely corresponds to the terminal knobs visualized by electron microscopy on the 5′ end of nascent rRNAs. The original purification of the SSU processome of Saccharomyces cerevisiae resulted in the identification of 28 proteins. Here, we characterize 12 additional protein components, including five small-ribosomal-subunit proteins (Rps4, Rps6, Rps7, Rps9, and Rps14) that had previously been copurified. Our multiple criteria for including a component as a bona fide SSU processome component included coimmunoprecipitation with Mpp10 (an SSU processome component), the U3 snoRNA, and the anticipated pre-rRNAs. Importantly, the association of specific ribosomal proteins with the SSU processome suggests that the SSU processome has roles in both pre-rRNA processing and ribosome assembly. These ribosomal proteins may be analogous to the primary or secondary RNA binding proteins first described in bacterial in vitro ribosome assembly maps. In addition to the ribosomal proteins and based on the same experimental approach, we found seven other proteins (Utp18, Noc4, Utp20, Utp21, Utp22, Emg1, and Krr1) to be bona fide SSU processome proteins.


1982 ◽  
Vol 95 (1) ◽  
pp. 267-277 ◽  
Author(s):  
R J Lapolla ◽  
A M Lambowitz

In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.


1979 ◽  
Vol 82 (1) ◽  
pp. 17-31 ◽  
Author(s):  
A M Lambowitz ◽  
R J LaPolla ◽  
R A Collins

Recent results with Neurospora crassa show that one protein (S-5, mol wt 52,000) associated with the mitochondrial (mit) small ribosomal subunit is translated within the mitochondria (Lambowitz et al. 1976. J. Mol. Biol. 107:223-253). In the present work, Neurospora mit ribosomal proteins were analyzed by two-dimensional gel electrophoresis using a modification of the gel system of Mets and Bogorad. The results show that S-5 is present in near stoichiometric concentrations in high salt (0.5 MKCl)-washed mit small subunits from wild-type strains. S-5 is among the most basic mit ribosomal proteins (pI greater than 10) and has a high affinity for RNA under the conditions of the urea-containing gel buffers. The role of S-5 in mit ribosome assembly was investigated by an indirect method, making use of chloramphenicol to specifically inhibit mit protein synthesis. Chloramphenicol was found to rapidly inhibit the assembly of mit small subunits leading to the formation of CAP-30S particles which sediment slightly behind mature small subunits (LaPolla and Lambowitz. 1977. J. Mol. 116: 189-205). Two-dimensional gel analysis shows that the more slowly sedimentaing CAP-30S particles are deficient in S-5 and in several other proteins, whereas these proteins are present in normal concentrations in mature small subunits from the same cells. Because S-5 is the only mit ribosomal protein whose synthesis is directly inhibited by chloramphenicol, the results tentatively suggest that S-5 plays a role in the assembly of mit small subunits. In addition, the results are consistent with the idea that S-5 stabilizes the binding of several other mit small subunit proteins. Two-dimensional gel electrophoresis was used to examine mit ribosomal proteins from [poky] and six additional extra-nuclear mutants with defects in the assembly of mit small subunits. The electrophoretic mobility of S-5 is not detectably altered in any of the mutants. However, [poky] mit small subunits are deficient in S-5 and also contain several other proteins in abnormally low or high concentrations. These and other results are consistent with a defect in a mit ribosomal constituent in [poky].


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


2002 ◽  
Vol 115 (14) ◽  
pp. 2985-2995 ◽  
Author(s):  
Terence I. Moy ◽  
Pamela A. Silver

Eukaryotic ribosome biogenesis requires multiple steps of nuclear transport because ribosomes are assembled in the nucleus while protein synthesis occurs in the cytoplasm. Using an in situ RNA localization assay in the yeast Saccharomyces cerevisiae, we determined that efficient nuclear export of the small ribosomal subunit requires Yrb2, a factor involved in Crm1-mediated export. Furthermore, in cells lacking YRB2, the stability and abundance of the small ribosomal subunit is decreased in comparison with the large ribosomal subunit. To identify additional factors affecting small subunit export, we performed a large-scale screen of temperature-sensitive mutants. We isolated new alleles of several nucleoporins and Ran-GTPase regulators. Together with further analysis of existing mutants,we show that nucleoporins previously shown to be defective in ribosomal assembly are also defective in export of the small ribosomal subunit.


2019 ◽  
Vol 47 (15) ◽  
pp. 8193-8206 ◽  
Author(s):  
Isabelle Iost ◽  
Chaitanya Jain

Abstract DEAD-box proteins (DBPs) comprise a large family of proteins that most commonly have been identified as regulators of ribosome assembly. The Escherichia coli DBP, SrmB, represents a model bacterial DBP whose absence impairs formation of the large ribosomal subunit (LSU). To define the basis for SrmB function, suppressors of the ribosomal defect of ΔsrmB strains were isolated. The major class of suppressors was found to map to the 5′ untranslated region (UTR) of the rplM-rpsI operon, which encodes the ribosomal proteins (r-proteins) L13 and S9. An analysis of protein abundance indicated that both r-proteins are under-produced in the ΔsrmB strain, but are increased in these suppressors, implicating r-protein underproduction as the molecular basis for the observed ribosomal defects. Reduced r-protein synthesis was determined to be caused by intrinsic transcription termination within the rplM 5′ UTR that is abrogated by SrmB. These results reveal a specific mechanism for DBP regulation of ribosomal assembly, indirectly mediated through its effects on r-protein expression.


Sign in / Sign up

Export Citation Format

Share Document