scholarly journals The Small-Subunit Processome Is a Ribosome Assembly Intermediate

2004 ◽  
Vol 3 (6) ◽  
pp. 1619-1626 ◽  
Author(s):  
Kara A. Bernstein ◽  
Jennifer E. G. Gallagher ◽  
Brianna M. Mitchell ◽  
Sander Granneman ◽  
Susan J. Baserga

ABSTRACT The small-subunit (SSU) processome is a large ribonucleoprotein required for the biogenesis of the 18S rRNA and likely corresponds to the terminal knobs visualized by electron microscopy on the 5′ end of nascent rRNAs. The original purification of the SSU processome of Saccharomyces cerevisiae resulted in the identification of 28 proteins. Here, we characterize 12 additional protein components, including five small-ribosomal-subunit proteins (Rps4, Rps6, Rps7, Rps9, and Rps14) that had previously been copurified. Our multiple criteria for including a component as a bona fide SSU processome component included coimmunoprecipitation with Mpp10 (an SSU processome component), the U3 snoRNA, and the anticipated pre-rRNAs. Importantly, the association of specific ribosomal proteins with the SSU processome suggests that the SSU processome has roles in both pre-rRNA processing and ribosome assembly. These ribosomal proteins may be analogous to the primary or secondary RNA binding proteins first described in bacterial in vitro ribosome assembly maps. In addition to the ribosomal proteins and based on the same experimental approach, we found seven other proteins (Utp18, Noc4, Utp20, Utp21, Utp22, Emg1, and Krr1) to be bona fide SSU processome proteins.

RNA ◽  
2021 ◽  
pp. rna.079025.121
Author(s):  
Joshua J Black ◽  
Arlen W Johnson

Ribosomes are the universally conserved ribonucleoprotein complexes that synthesize proteins. The two subunits of the eukaryotic ribosome are produced through a quasi-independent assembly-line-like pathway involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. The earliest intermediate of the small subunit (SSU or 40S) is the SSU Processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors are known to bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S, and we suggest a model in which the binding of the Rps0-cluster proteins and Rio2 promote the release of Bud23.


2017 ◽  
Author(s):  
Jonas Barandun ◽  
Malik Chaker-Margot ◽  
Mirjam Hunziker ◽  
Kelly R. Molloy ◽  
Brian T. Chait ◽  
...  

The small subunit processome represents the earliest stable precursor of the eukaryotic small ribosomal subunit. Here we present the cryo-EM structure of the Saccharomyces cerevisiae small subunit processome at an overall resolution of 3.8 Å, which provides an essentially complete atomic model of this assembly. In this nucleolar superstructure, 51 ribosome assembly factors and two RNAs encapsulate the 18S rRNA precursor and 15 ribosomal proteins in a state that precedes pre-rRNA cleavage at site A1. Extended flexible proteins are employed to connect distant sites in this particle. Molecular mimicry, steric hindrance as well as protein-and RNA-mediated RNA remodeling are used in a concerted fashion to prevent the premature formation of the central pseudoknot and its surrounding elements within the small ribosomal subunit.


2008 ◽  
Vol 8 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Kimberly Prohaska ◽  
Noreen Williams

ABSTRACT We previously identified two Trypanosoma brucei RNA binding proteins, P34 and P37, and determined that they are essential for proper ribosomal assembly in this organism. Loss of these proteins via RNA interference is lethal and causes a decrease in both 5S rRNA levels and formation of 80S ribosomes, concomitant with a decrease in total cellular protein synthesis. These data suggest that these proteins are involved at some point in the ribosomal biogenesis pathway. In the current study, we have performed subcellular fractionation in conjunction with immune capture experiments specific for 60S ribosomal proteins and accessory factors in order to determine when and where P34 and P37 are involved in the ribosomal biogenesis pathway. These studies demonstrate that P34 and P37 associate with the 60S ribosomal subunit at the stage of the nucleolar 90S particle and remain associated subsequent to nuclear export. In addition, P34 and P37 associate with conserved 60S ribosomal subunit nuclear export factors exportin 1 and Nmd3, suggesting that they are components of the 60S ribosomal subunit nuclear export complex in T. brucei. Most significantly, the pre-60S complex does not associate with exportin 1 or Nmd3 in the absence of P34 and P37. These results demonstrate that, although T. brucei 60S ribosomal subunits utilize a nuclear export complex similar to that described for other organisms, trypanosome-specific factors are essential to the process.


2021 ◽  
Author(s):  
Joshua J Black ◽  
Arlen W Johnson

Ribosomes are the universally conserved ribonucleoprotein complexes that synthesize proteins. The two subunits of the eukaryotic ribosome are produced through a quasi-independent assembly-line-like pathway involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. The earliest intermediate of the small subunit (SSU or 40S) is the SSU Processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors are known to bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S, and we suggest a model in which the binding of the Rps0-cluster proteins and Rio2 promote the release of Bud23.


1982 ◽  
Vol 95 (1) ◽  
pp. 267-277 ◽  
Author(s):  
R J Lapolla ◽  
A M Lambowitz

In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.


1979 ◽  
Vol 82 (1) ◽  
pp. 17-31 ◽  
Author(s):  
A M Lambowitz ◽  
R J LaPolla ◽  
R A Collins

Recent results with Neurospora crassa show that one protein (S-5, mol wt 52,000) associated with the mitochondrial (mit) small ribosomal subunit is translated within the mitochondria (Lambowitz et al. 1976. J. Mol. Biol. 107:223-253). In the present work, Neurospora mit ribosomal proteins were analyzed by two-dimensional gel electrophoresis using a modification of the gel system of Mets and Bogorad. The results show that S-5 is present in near stoichiometric concentrations in high salt (0.5 MKCl)-washed mit small subunits from wild-type strains. S-5 is among the most basic mit ribosomal proteins (pI greater than 10) and has a high affinity for RNA under the conditions of the urea-containing gel buffers. The role of S-5 in mit ribosome assembly was investigated by an indirect method, making use of chloramphenicol to specifically inhibit mit protein synthesis. Chloramphenicol was found to rapidly inhibit the assembly of mit small subunits leading to the formation of CAP-30S particles which sediment slightly behind mature small subunits (LaPolla and Lambowitz. 1977. J. Mol. 116: 189-205). Two-dimensional gel analysis shows that the more slowly sedimentaing CAP-30S particles are deficient in S-5 and in several other proteins, whereas these proteins are present in normal concentrations in mature small subunits from the same cells. Because S-5 is the only mit ribosomal protein whose synthesis is directly inhibited by chloramphenicol, the results tentatively suggest that S-5 plays a role in the assembly of mit small subunits. In addition, the results are consistent with the idea that S-5 stabilizes the binding of several other mit small subunit proteins. Two-dimensional gel electrophoresis was used to examine mit ribosomal proteins from [poky] and six additional extra-nuclear mutants with defects in the assembly of mit small subunits. The electrophoretic mobility of S-5 is not detectably altered in any of the mutants. However, [poky] mit small subunits are deficient in S-5 and also contain several other proteins in abnormally low or high concentrations. These and other results are consistent with a defect in a mit ribosomal constituent in [poky].


2009 ◽  
Vol 29 (11) ◽  
pp. 3007-3017 ◽  
Author(s):  
Amy Jane Turner ◽  
Andrew Alexander Knox ◽  
José-Luis Prieto ◽  
Brian McStay ◽  
Nicholas James Watkins

ABSTRACT Eukaryotic 18S rRNA processing is mediated by the small subunit (SSU) processome, a machine comprised of the U3 small nucleolar RNP (U3 snoRNP), tUTP, bUTP, MPP10, and BMS1/RCL1 subcomplexes. We report that the human SSU processome is a dynamic structure with the recruitment and release of subcomplexes occurring during the early stages of ribosome biogenesis. A novel 50S U3 snoRNP accumulated when either pre-rRNA transcription was blocked or the tUTP proteins were depleted. This complex did not contain the tUTP, bUTP, MPP10, and BMS1/RCL1 subcomplexes but was associated with the RNA-binding proteins nucleolin and RRP5 and the RNA helicase DBP4. Our data suggest that the 50S U3 snoRNP is an SSU assembly intermediate that is likely recruited to the pre-rRNA through the RNA-binding proteins nucleolin and RRP5. We predict that nucleolin is only transiently associated with the SSU processome and likely leaves the complex not long after 50S U3 snoRNP recruitment. The nucleolin-binding site potentially overlaps that of several other key factors, and we propose that this protein must leave the SSU processome for pre-rRNA processing to occur.


2021 ◽  
Vol 15 (10) ◽  
pp. e0009899
Author(s):  
Ludmila A. Assis ◽  
Moezio V. C. Santos Filho ◽  
Joao R. da Cruz Silva ◽  
Maria J. R. Bezerra ◽  
Irassandra R. P. U. C. de Aquino ◽  
...  

Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions. Here, using RNA-immunoprecipitation sequencing analysis we show that the Leishmania PABP1 preferentially associates with mRNAs encoding ribosomal proteins, while PABP2 and PABP3 bind to an overlapping set of mRNAs distinct to those enriched in PABP1. Immunoprecipitation studies combined to mass-spectrometry analysis identified RBPs differentially associated with PABP1 or PABP2, including RBP23 and DRBD2, respectively, that were investigated further. Both RBP23 and DRBD2 bind directly to the three PABPs in vitro, but reciprocal experiments confirmed preferential co-immunoprecipitation of PABP1, as well as the EIF4E4/EIF4G3 based translation initiation complex, with RBP23. Other RBP23 binding partners also imply a direct role in translation. DRBD2, in contrast, co-immunoprecipitated with PABP2, PABP3 and with RBPs unrelated to translation. Over 90% of the RBP23-bound mRNAs code for ribosomal proteins, mainly absent from the transcripts co-precipitated with DRBD2. These experiments suggest a novel and specific route for translation of the ribosomal protein mRNAs, mediated by RBP23, PABP1 and the associated EIF4E4/EIF4G3 complex. They also highlight the unique roles that different PABP homologues may have in eukaryotic cells associated with mRNA translation.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document