scholarly journals Precise, pan-cancer discovery of gene fusions reveals a signature of selection in primary tumors

2017 ◽  
Author(s):  
Donald Eric Freeman ◽  
Gillian Lee Hsieh ◽  
Jonathan Michael Howard ◽  
Erik Lehnert ◽  
Julia Salzman

Short AbstractThe extent to which gene fusions function as drivers of cancer remains a critical open question in cancer biology. In principle, transcriptome sequencing provided by The Cancer Genome Atlas (TCGA) enables unbiased discovery of gene fusions and post-analysis that informs the answer to this question. To date, such an analysis has been impossible because of performance limitations in fusion detection algorithms. By engineering a new, more precise, algorithm and statistical approaches to post-analysis of fusions called in TCGA data, we report new recurrent gene fusions, including those that could be druggable; new candidate pan-cancer oncogenes based on their profiles in fusions; and prevalent, previously overlooked, candidate oncogenic gene fusions in ovarian cancer, a disease with minimal treatment advances in recent decades. The novel and reproducible statistical algorithms and, more importantly, the biological conclusions open the door for increased attention to gene fusions as drivers of cancer and for future research into using fusions for targeted therapy.

2019 ◽  
Vol 116 (31) ◽  
pp. 15524-15533 ◽  
Author(s):  
Roozbeh Dehghannasiri ◽  
Donald E. Freeman ◽  
Milos Jordanski ◽  
Gillian L. Hsieh ◽  
Ana Damljanovic ◽  
...  

The extent to which gene fusions function as drivers of cancer remains a critical open question. Current algorithms do not sufficiently identify false-positive fusions arising during library preparation, sequencing, and alignment. Here, we introduce Data-Enriched Efficient PrEcise STatistical fusion detection (DEEPEST), an algorithm that uses statistical modeling to minimize false-positives while increasing the sensitivity of fusion detection. In 9,946 tumor RNA-sequencing datasets from The Cancer Genome Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 fusions, 30% more than identified by other methods, while calling 10-fold fewer false-positive fusions in nontransformed human tissues. We leverage the increased precision of DEEPEST to discover fundamental cancer biology. Namely, 888 candidate oncogenes are identified based on overrepresentation in DEEPEST calls, and 1,078 previously unreported fusions involving long intergenic noncoding RNAs, demonstrating a previously unappreciated prevalence and potential for function. DEEPEST also reveals a high enrichment for fusions involving oncogenes in cancers, including ovarian cancer, which has had minimal treatment advances in recent decades, finding that more than 50% of tumors harbor gene fusions predicted to be oncogenic. Specific protein domains are enriched in DEEPEST calls, indicating a global selection for fusion functionality: kinase domains are nearly 2-fold more enriched in DEEPEST calls than expected by chance, as are domains involved in (anaerobic) metabolism and DNA binding. The statistical algorithms, population-level analytic framework, and the biological conclusions of DEEPEST call for increased attention to gene fusions as drivers of cancer and for future research into using fusions for targeted therapy.


2018 ◽  
Vol 19 (10) ◽  
pp. 3250 ◽  
Author(s):  
Anna Sorrentino ◽  
Antonio Federico ◽  
Monica Rienzo ◽  
Patrizia Gazzerro ◽  
Maurizio Bifulco ◽  
...  

The PR/SET domain gene family (PRDM) encodes 19 different transcription factors that share a subtype of the SET domain [Su(var)3-9, enhancer-of-zeste and trithorax] known as the PRDF1-RIZ (PR) homology domain. This domain, with its potential methyltransferase activity, is followed by a variable number of zinc-finger motifs, which likely mediate protein–protein, protein–RNA, or protein–DNA interactions. Intriguingly, almost all PRDM family members express different isoforms, which likely play opposite roles in oncogenesis. Remarkably, several studies have described alterations in most of the family members in malignancies. Here, to obtain a pan-cancer overview of the genomic and transcriptomic alterations of PRDM genes, we reanalyzed the Exome- and RNA-Seq public datasets available at The Cancer Genome Atlas portal. Overall, PRDM2, PRDM3/MECOM, PRDM9, PRDM16 and ZFPM2/FOG2 were the most mutated genes with pan-cancer frequencies of protein-affecting mutations higher than 1%. Moreover, we observed heterogeneity in the mutation frequencies of these genes across tumors, with cancer types also reaching a value of about 20% of mutated samples for a specific PRDM gene. Of note, ZFPM1/FOG1 mutations occurred in 50% of adrenocortical carcinoma patients and were localized in a hotspot region. These findings, together with OncodriveCLUST results, suggest it could be putatively considered a cancer driver gene in this malignancy. Finally, transcriptome analysis from RNA-Seq data of paired samples revealed that transcription of PRDMs was significantly altered in several tumors. Specifically, PRDM12 and PRDM13 were largely overexpressed in many cancers whereas PRDM16 and ZFPM2/FOG2 were often downregulated. Some of these findings were also confirmed by real-time-PCR on primary tumors.


2020 ◽  
Vol 21 (17) ◽  
pp. 6087
Author(s):  
Yunzhen Wei ◽  
Limeng Zhou ◽  
Yingzhang Huang ◽  
Dianjing Guo

Long noncoding RNA (lncRNA)/microRNA(miRNA)/mRNA triplets contribute to cancer biology. However, identifying significative triplets remains a major challenge for cancer research. The dynamic changes among factors of the triplets have been less understood. Here, by integrating target information and expression datasets, we proposed a novel computational framework to identify the triplets termed as “lncRNA-perturbated triplets”. We applied the framework to five cancer datasets in The Cancer Genome Atlas (TCGA) project and identified 109 triplets. We showed that the paired miRNAs and mRNAs were widely perturbated by lncRNAs in different cancer types. LncRNA perturbators and lncRNA-perturbated mRNAs showed significantly higher evolutionary conservation than other lncRNAs and mRNAs. Importantly, the lncRNA-perturbated triplets exhibited high cancer specificity. The pan-cancer perturbator OIP5-AS1 had higher expression level than that of the cancer-specific perturbators. These lncRNA perturbators were significantly enriched in known cancer-related pathways. Furthermore, among the 25 lncRNA in the 109 triplets, lncRNA SNHG7 was identified as a stable potential biomarker in lung adenocarcinoma (LUAD) by combining the TCGA dataset and two independent GEO datasets. Results from cell transfection also indicated that overexpression of lncRNA SNHG7 and TUG1 enhanced the expression of the corresponding mRNA PNMA2 and CDC7 in LUAD. Our study provides a systematic dissection of lncRNA-perturbated triplets and facilitates our understanding of the molecular roles of lncRNAs in cancers.


2021 ◽  
Author(s):  
Romola Grace Cavet ◽  
Peng Yue ◽  
Guy Lawrence Cavet

DNA methylation influences gene expression and is altered in many cancers, but the relationship between DNA methylation and cancer outcomes is not yet fully understood. If methylation of specific genes is associated with better or worse outcomes, it could implicate genes in driving cancer and suggest therapeutic strategies. To advance our understanding of DNA methylation in cancer biology, we conducted a pan-cancer analysis of the relationship between methylation and overall survival. Using data on 28 tumor types from The Cancer Genome Atlas (TCGA), we identified genes and genomic regions whose methylation was recurrently associated with survival across multiple cancer types. While global DNA methylation levels are associated with outcome in some cancers, we found that the gene-specific associations were largely independent of these global effects. Genes with recurrent associations across cancer types were enriched for certain biological functions, such as immunity and cell-cell adhesion. While these recurrently associated genes were found throughout the genome, they were enriched in certain genomic regions, which may further implicate certain gene families and gene clusters in affecting survival. By finding common features across cancer types, our results link DNA methylation to patient outcomes, identify biological mechanisms that could explain survival differences, and support the potential value of treatments that modulate the methylation of tumor DNA.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 182
Author(s):  
Rafael Sebastián Fort ◽  
María Ana Duhagon

Background: The vault RNAs (vtRNAs) are a class of 84-141-nt eukaryotic non-coding RNAs transcribed by RNA polymerase III, associated to the ribonucleoprotein complex known as vault particle. Of the four human vtRNA genes, vtRNA1-1, vtRNA1-2 and vtRNA1-3, clustered at locus 1, are integral components of the vault particle, while vtRNA2-1 is a more divergent homologue located in a second locus. Gene expression studies of vtRNAs in large cohorts have been hindered by their unsuccessful sequencing using conventional transcriptomic approaches. Methods: VtRNA expression in The Cancer Genome Atlas (TCGA) Pan-Cancer cohort was estimated using the genome-wide DNA methylation and chromatin accessibility data (ATAC-seq) of their genes as surrogate variables. The association between vtRNA expression and patient clinical outcome, immune subtypes and transcriptionally co-regulated gene programs was analyzed in the dataset. Results: VtRNA1-1 has the most accessible chromatin, followed by vtRNA1-2, vtRNA2-1 and vtRNA1-3. Although the vtRNAs are co-regulated by transcription factors related to viral infection, vtRNA2-1 is the most independently regulated homologue. VtRNA1-1 and vtRNA1-3 chromatin status does not significantly change in cancer tissues. Meanwhile, vtRNA2-1 and vtRNA1-2 expression is widely deregulated in neoplastic tissues and its alteration is compatible with a broad oncogenic role for vtRNA1-2, and both tumor suppressor and oncogenic functions for vtRNA2-1. Yet, vtRNA1-1, vtRNA1-2 and vtRNA2-1 promoter DNA methylation predicts a shorter patient overall survival cancer-wide. In addition, gene ontology analyses of vtRNAs co-regulated genes identify a chromosome regulatory domain, epithelial differentiation, immune and thyroid cancer gene sets for specific vtRNAs. Furthermore, vtRNA expression patterns are associated with cancer immune subtypes and vtRNA1-2 expression is positively associated with cell proliferation and wound healing. Conclusions: Our study presents the landscape of vtRNA expression cancer-wide, identifying co-regulated gene networks and ontological pathways associated with the different vtRNA genes that may account for their diverse roles in cancer.


2017 ◽  
Author(s):  
Marieke L. Kuijjer ◽  
Joseph N. Paulson ◽  
Peter Salzman ◽  
Wei Ding ◽  
John Quackenbush

BACKGROUNDWith the onset of next generation sequencing technologies, we have made great progress in identifying recurrent mutational drivers of cancer. As cancer tissues are now frequently screened for specific sets of mutations, a large amount of samples has become available for analysis. Classification of patients with similar mutation profiles may help identifying subgroups of patients who might benefit from specific types of treatment. However, classification based on somatic mutations is challenging due to the sparseness and heterogeneity of the data.METHODSHere, we describe a new method to de-sparsify somatic mutation data using biological pathways. We applied this method to 23 cancer types from The Cancer Genome Atlas, including samples from 5, 805 primary tumors.RESULTSWe show that, for most cancer types, de-sparsified mutation data associates with phenotypic data. We identify poor prognostic subtypes in three cancer types, which are associated with mutations in signal transduction pathways for which targeted treatment options are available. We identify subtype-drug associations for 14 additional subtypes. Finally, we perform a pan-cancer subtyping analysis and identify nine pan-cancer subtypes, which associate with mutations in four overarching sets of biological pathways.CONCLUSIONSThis study is an important step towards understanding mutational patterns in cancer.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16717-e16717
Author(s):  
Javiera Obreque ◽  
Luis Vergara ◽  
Felipe Suarez ◽  
Patricia Garcia ◽  
Katherine Marcelain ◽  
...  

e16717 Background: Human gallbladder cancer research lacks in vitro models that can recapitulate the pathophysiology of the original tumor and normal epithelia. Organoids cultures emulate the tumor heterogeneity and have been successively used as translational models to evaluate clinical response to anticancer drug. Here, we established and characterized patients derived organoids culture (PDOs) from human gallbladder cancer patients. Methods: Fresh tissues obtained from gallbladder cancer patients who underwent cholecystectomy were digested with Collagenase/Dispase, filtered and then suspension cells were mixed with Matrigel (1:1) for organoids establishment. Cultures were maintained at 37°C and 5% CO2. The organoids were characterized through histopathology evaluation, immunohistochemistry, and ultra-deed targeted sequencing (TruSeq protocol, Illumina, TSACP; 25 genes). In addition, we evaluated the response of organoids to gemcitabine, cisplatin and Fluorouracil (5-FU), using the CellTiter-Glo 3D luminescence assay. Results: We have successfully established PDOs cultures from six patients with gallbladder adenocarcinoma with a 60% efficiency (6/10). The PDOs recapitulated the histological features and maintained the expression of CK19, Ki67, P53 as compared with the epithelia of primary tumors. Moreover, the PDOs maintained the mutational status of major driver genes, including TP53 and PIK3CA. Finally, tumor organoids showed differential response to standard chemotherapy treatment. GBC-PDO2 and GBC-PDO4 showed high resistant to gemcitabine (IC50 > 10μM), which suggests that the personalized treatment is necessary for generate better response. Conclusions: the established gallbladder tumor organoids exhibited similar histological and genomic features in relation to their original epithelia. PDOs can be considered a valuable tool for future research aimed to understand gallbladder cancer biology and for developing personalized-medicine approaches for advanced gallbladder cancer patients. (Funding Source: FONDECYT #1171463, FONDECYT #1170893 and Fondef IT16I10051).


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 182
Author(s):  
Rafael Sebastián Fort ◽  
María Ana Duhagon

Background: The vault RNAs (vtRNAs) are a class of 84-141-nt eukaryotic non-coding RNAs transcribed by RNA polymerase III, associated to the ribonucleoprotein complex known as vault particle. Of the four human vtRNA genes, vtRNA1-1, vtRNA1-2 and vtRNA1-3, clustered at locus 1, are integral components of the vault particle, while vtRNA2-1 is a more divergent homologue located in a second locus. Gene expression studies of vtRNAs in large cohorts have been hindered by their unsuccessful sequencing using conventional transcriptomic approaches. Methods: VtRNA expression in The Cancer Genome Atlas (TCGA) Pan-Cancer cohort was estimated using the genome-wide DNA methylation and chromatin accessibility data (ATAC-seq) of their genes as surrogate variables. The association between vtRNA expression and patient clinical outcome, immune subtypes and transcriptionally co-regulated gene programs was analyzed in the dataset. Results: VtRNAs promoters are enriched in transcription factors related to viral infection. VtRNA2-1 is likely the most independently regulated homologue. VtRNA1-1 has the most accessible chromatin, followed by vtRNA1-2, vtRNA2-1 and vtRNA1-3. VtRNA1-1 and vtRNA1-3 chromatin status does not significantly change in cancer tissues. Meanwhile, vtRNA2-1 and vtRNA1-2 expression is widely deregulated in neoplastic tissues and its alteration is compatible with a broad oncogenic role for vtRNA1-2, and both tumor suppressor and oncogenic functions for vtRNA2-1. Yet, vtRNA1-1, vtRNA1-2 and vtRNA2-1 promoter DNA methylation predicts a shorter patient overall survival cancer-wide. In addition, gene ontology analyses of vtRNAs co-regulated genes identify a chromosome regulatory domain, epithelial differentiation, immune and thyroid cancer gene sets for specific vtRNAs. Furthermore, vtRNA expression patterns are associated with cancer immune subtypes and vtRNA1-2 expression is positively associated with cell proliferation and wound healing. Conclusions: Our study presents the landscape of vtRNA chromatin status cancer-wide, identifying co-regulated gene networks and ontological pathways associated with the different vtRNA genes that may account for their diverse roles in cancer.


2019 ◽  
Author(s):  
Roozbeh Dehghannasiri ◽  
Donald Eric Freeman ◽  
Milos Jordanski ◽  
Gillian L. Hsieh ◽  
Ana Damljanovic ◽  
...  

Short AbstractThe extent to which gene fusions function as drivers of cancer remains a critical open question. Current algorithms do not sufficiently identify false-positive fusions arising during library preparation, sequencing, and alignment. Here, we introduce a new algorithm, DEEPEST, that uses statistical modeling to minimize false-positives while increasing the sensitivity of fusion detection. In 9,946 tumor RNA-sequencing datasets from The Cancer Genome Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 fusions, 30% more than identified by other methods, while calling ten-fold fewer false-positive fusions in non-transformed human tissues. We leverage the increased precision of DEEPEST to discover new cancer biology. For example, 888 new candidate oncogenes are identified based on over-representation in DEEPEST-Fusion calls, and 1,078 previously unreported fusions involving long intergenic noncoding RNAs partners, demonstrating a previously unappreciated prevalence and potential for function. Specific protein domains are enriched in DEEPEST calls, demonstrating a global selection for fusion functionality: kinase domains are nearly 2-fold more enriched in DEEPEST calls than expected by chance, as are domains involved in (anaerobic) metabolism and DNA binding. DEEPEST also reveals a high enrichment for fusions involving known and novel oncogenes in diseases including ovarian cancer, which has had minimal treatment advances in recent decades, finding that more than 50% of tumors harbor gene fusions predicted to be oncogenic. The statistical algorithms, population-level analytic framework, and the biological conclusions of DEEPEST call for increased attention to gene fusions as drivers of cancer and for future research into using fusions for targeted therapy.SignificanceGene fusions are tumor-specific genomic aberrations and are among the most powerful biomarkers and drug targets in translational cancer biology. The advent of RNA-Seq technologies over the past decade has provided a unique opportunity for detecting novel fusions via deploying computational algorithms on public sequencing databases. Yet, precise fusion detection algorithms are still out of reach. We develop DEEPEST, a highly specific and efficient statistical pipeline specially designed for mining massive sequencing databases, and apply it to all 33 tumor types and 10,500 samples in The Cancer Genome Atlas database. We systematically profile the landscape of detected fusions via employing classic statistical models and identify several signatures of selection for fusions in tumors.Software availabilityDEEPEST-Fusion workflow with a detailed readme file is available as a Github repository:https://github.com/salzmanlab/DEEPEST-Fusion. In addition to the main workflow, which is based on CWL, example input and batch scripts (for job submission on local clusters), and codes for building the SBT files and SBT querying are provided in the repository. All custom scripts used for systematic analysis of fusions are also available in the same repository.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dejun Wu ◽  
Zhenhua Yin ◽  
Yisheng Ji ◽  
Lin Li ◽  
Yunxin Li ◽  
...  

AbstractLncRNAs play a pivotal role in tumorigenesis and development. However, the potential involvement of lncRNAs in colon adenocarcinoma (COAD) needs to be further explored. All the data used in this study were obtained from The Cancer Genome Atlas database, and all analyses were conducted using R software. Basing on the seven prognosis-related lncRNAs finally selected, we developed a prognosis-predicting model with powerful effectiveness (training cohort, 1 year: AUC = 0.70, 95% Cl = 0.57–0.78; 3 years: AUC = 0.71, 95% Cl = 0.6–0.8; 5 years: AUC = 0.76, 95% Cl = 0.66–0.87; validation cohort, 1 year: AUC = 0.70, 95% Cl = 0.58–0.8; 3 years: AUC = 0.73, 95% Cl = 0.63–0.82; 5 years: AUC = 0.68, 95% Cl = 0.5–0.85). The VEGF and Notch pathway were analyzed through GSEA analysis, and low immune and stromal scores were found in high-risk patients (immune score, cor =  − 0.15, P < 0.001; stromal score, cor =  − 0.18, P < 0.001) , which may partially explain the poor prognosis of patients in the high-risk group. We screened lncRNAs that are significantly associated with the survival of patients with COAD and possibly participate in autophagy regulation. This study may provide direction for future research.


Sign in / Sign up

Export Citation Format

Share Document