scholarly journals IFITM proteins inhibit HIV-1 protein synthesis

2017 ◽  
Author(s):  
Wing-Yiu Jason Lee ◽  
Chen Liang ◽  
Richard D Sloan

AbstractInterferon induced transmembrane proteins (IFITMs) inhibit the cellular entry of a broad range of viruses, but it has been suspected that for HIV-1 IFITMs may also inhibit a post-integration replicative step. We show that IFITM expression reduces HIV-1 viral protein synthesis by preferentially excluding viral mRNA transcripts from translation and thereby restricts viral production. Codon-optimization of proviral DNA rescues viral translation, implying that IFITM-mediated restriction requires recognition of viral RNA elements. In addition, we find that expression of the viral accessory protein Nef can help overcome the IFITM-mediated inhibition of virus production. Our studies identify a novel role for IFITMs in inhibiting HIV replication at the level of translation, but show that the effects can be overcome by the lentiviral protein Nef.

Author(s):  
James K. Koehler ◽  
Steven G. Reed ◽  
Joao S. Silva

As part of a larger study involving the co-infection of human monocyte cultures with HIV and protozoan parasites, electron microscopic observations were made on the course of HIV replication and infection in these cells. Although several ultrastructural studies of the cytopathology associated with HIV infection have appeared, few studies have shown the details of virus production in “normal,” human monocytes/macrophages, one of the natural targets of the virus, and suspected of being a locus of quiescent virus during its long latent period. In this report, we detail some of the interactions of developing virons with the membranes and organelles of the monocyte host.Peripheral blood monocytes were prepared from buffy coats (Portland Red Cross) by Percoll gradient centrifugation, followed by adherence to cover slips. 90-95% pure monocytes were cultured in RPMI with 5% non-activated human AB serum for four days and infected with 100 TCID50/ml of HIV-1 for four hours, washed and incubated in fresh medium for 14 days.


1994 ◽  
Vol 5 (2) ◽  
pp. 99-104 ◽  
Author(s):  
M. J. Almela ◽  
A. Irurzun ◽  
L. Carrasco

The naturally occurring isoflavonoid orobol exhibits antiviral effects against some animal viruses. Addition of the compound after virus entry inhibits the appearance of late viral protein synthesis in Vesicular Stomatitis Virus, influenza, or vaccinia virus-infected cells, but has no effect on poliovirus protein synthesis. Concentrations of the compound above 10–50 Mg ml−1 are sufficient to decrease the synthesis of VSV proteins when added early during infection, but have no effect on viral translation if added later, indicating that orobol does not block VSV translation directly. The synthesis of VSV nucleic acids is one of the targets of this flavonoid. The synthesis of both minus and plus-stranded viral RNA are inhibited by orobol when added during the first 2 h of infection. In addition, this compound interferes potently with the glycosylation of VSV G protein, indicating that orobol has several targets of antiviral action. The possibility that orobol interferes with the function of the cellular vesicular system is discussed.


2009 ◽  
Vol 84 (2) ◽  
pp. 1124-1138 ◽  
Author(s):  
Julianne L. Garrey ◽  
Yun-Young Lee ◽  
Hilda H. T. Au ◽  
Martin Bushell ◽  
Eric Jan

ABSTRACT The dicistrovirus is a positive-strand single-stranded RNA virus that possesses two internal ribosome entry sites (IRES) that direct translation of distinct open reading frames encoding the viral structural and nonstructural proteins. Through an unusual mechanism, the intergenic region (IGR) IRES responsible for viral structural protein expression mimics a tRNA to directly recruit the ribosome and set the ribosome into translational elongation. In this study, we explored the mechanism of host translational shutoff in Drosophila S2 cells infected by the dicistrovirus, cricket paralysis virus (CrPV). CrPV infection of S2 cells results in host translational shutoff concomitant with an increase in viral protein synthesis. CrPV infection resulted in the dissociation of eukaryotic translation initiation factor 4G (eIF4G) and eIF4E early in infection and the induction of deIF2α phosphorylation at 3 h postinfection, which lags after the initial inhibition of host translation. Forced dephosphorylation of deIF2α by overexpression of dGADD34, which activates protein phosphatase I, did not prevent translational shutoff nor alter virus production, demonstrating that deIF2α phosphorylation is dispensable for host translational shutoff. However, premature induction of deIF2α phosphorylation by thapsigargin treatment early in infection reduced viral protein synthesis and replication. Finally, translation mediated by the 5′ untranslated region (5′UTR) and the IGR IRES were resistant to impairment of eIF4F or eIF2 in translation extracts. These results support a model by which the alteration of the deIF4F complex contribute to the shutoff of host translation during CrPV infection, thereby promoting viral protein synthesis via the CrPV 5′UTR and IGR IRES.


2017 ◽  
Vol 474 (10) ◽  
pp. 1653-1668 ◽  
Author(s):  
Amjad Ali ◽  
Rameez Raja ◽  
Sabihur Rahman Farooqui ◽  
Shaista Ahmad ◽  
Akhil C. Banerjea

Deubiquitinases (DUBs) are key regulators of complex cellular processes. HIV-1 Tat is synthesized early after infection and is mainly responsible for enhancing viral production. Here, we report that one of the DUBs, USP7, stabilized the HIV-1 Tat protein through its deubiquitination. Treatment with either a general DUB inhibitor (PR-619) or USP7-specific inhibitor (P5091) resulted in Tat protein degradation. The USP7-specific inhibitor reduced virus production in a latently infected T-lymphocytic cell line J1.1, which produces large amounts of HIV-1 upon stimulation. A potent increase in Tat-mediated HIV-1 production was observed with USP7 in a dose-dependent manner. As expected, deletion of the USP7 gene using the CRISPR-Cas9 method reduced the Tat protein and supported less virus production. Interestingly, the levels of endogenous USP7 increased after HIV-1 infection in human T-cells (MOLT-3) and in mammalian cells transfected with HIV-1 proviral DNA. Thus, HIV-1 Tat is stabilized by the host cell deubiquitinase USP7, leading to enhanced viral production, and HIV-1 in turn up-regulates the USP7 protein level.


1995 ◽  
Vol 6 (3) ◽  
pp. 187-189 ◽  
Author(s):  
N. Mahmood ◽  
A. Burke ◽  
S. Hussain ◽  
R. M. Anner ◽  
B. M. Anner

A number of metal compounds and their complexes with cysteine and N-acetyl-cysteine (NAC) were tested for their ability to inhibit HIV replication in vitro, specifically in chronically infected H9 cells (which produce virus continuously). Out of seven metal compounds tested, only bismuth nitrate and bismuth sodium tartrate inhibited virus production in chronically infected H9 cells. The complexes made with metals and cysteine or NAC had slightly improved selective indices.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3591-3599 ◽  
Author(s):  
MW Saville ◽  
K Taga ◽  
A Foli ◽  
S Broder ◽  
G Tosato ◽  
...  

The cytokine interleukin-10 (IL-10) has been implicated in the pathogenesis of a number of disease states, including Epstein-Barr virus and human immunodeficiency virus (HIV-1) infections. In the acquired immunodeficiency syndrome (AIDS), it has been suggested that IL-10 may have a deleterious effect by suppressing cell-mediated immunity. However, there are few data on its direct effects on HIV-1 replication. In the present study, we have found that recombinant human IL-10 (rhIL-10), present during days 0 through 2, potently inhibits HIV production in elutriated monocyte/macrophage (M/M) cultures with a 50% inhibitory concentration (IC50) of approximately 0.03 U/mL. This effect did not appear to be caused by toxicity to M/M because there was no change in cell viability, ability to phagocytose latex beads, or protein synthesis as measured by [3H]-leucine incorporation, at doses of rhIL-10 that inhibit viral replication. In addition, lipopolysaccharide-induced production of IL-1 beta, IL-6, or tumor necrosis factor-alpha was not affected at these doses, nor were human mononuclear cell proliferative responses to phytohemagglutinin, OKT3 antibody, or tetanus toxoid. HIV-1 replication was similarly decreased by rhIL-10 in the monocytoid line U937 without signs of cellular toxicity. However, these effects required much higher concentrations of rhIL-10, and viral production was only partially suppressed. rhIL-10 also slightly inhibited HIV-induced cytopathicity in ATH-8, a tetanus toxoid-specific, retrovirally immortalized T-cell line, but had no effect on HIV replication in the H9 and MOLT-4 T cell lines. Thus, rhIL- 10 appears to inhibit HIV replication predominantly in cells of the M/M lineage. This effect may serve to reduce viral production in patients with AIDS. However, additional studies will be needed to more precisely define its physiologic role in this disease.


2007 ◽  
Vol 81 (10) ◽  
pp. 5121-5131 ◽  
Author(s):  
Helen S. Christensen ◽  
Aïcha Daher ◽  
Kaitlin J. Soye ◽  
Lisa B. Frankel ◽  
Marina R. Alexander ◽  
...  

ABSTRACT RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3591-3599 ◽  
Author(s):  
MW Saville ◽  
K Taga ◽  
A Foli ◽  
S Broder ◽  
G Tosato ◽  
...  

Abstract The cytokine interleukin-10 (IL-10) has been implicated in the pathogenesis of a number of disease states, including Epstein-Barr virus and human immunodeficiency virus (HIV-1) infections. In the acquired immunodeficiency syndrome (AIDS), it has been suggested that IL-10 may have a deleterious effect by suppressing cell-mediated immunity. However, there are few data on its direct effects on HIV-1 replication. In the present study, we have found that recombinant human IL-10 (rhIL-10), present during days 0 through 2, potently inhibits HIV production in elutriated monocyte/macrophage (M/M) cultures with a 50% inhibitory concentration (IC50) of approximately 0.03 U/mL. This effect did not appear to be caused by toxicity to M/M because there was no change in cell viability, ability to phagocytose latex beads, or protein synthesis as measured by [3H]-leucine incorporation, at doses of rhIL-10 that inhibit viral replication. In addition, lipopolysaccharide-induced production of IL-1 beta, IL-6, or tumor necrosis factor-alpha was not affected at these doses, nor were human mononuclear cell proliferative responses to phytohemagglutinin, OKT3 antibody, or tetanus toxoid. HIV-1 replication was similarly decreased by rhIL-10 in the monocytoid line U937 without signs of cellular toxicity. However, these effects required much higher concentrations of rhIL-10, and viral production was only partially suppressed. rhIL-10 also slightly inhibited HIV-induced cytopathicity in ATH-8, a tetanus toxoid-specific, retrovirally immortalized T-cell line, but had no effect on HIV replication in the H9 and MOLT-4 T cell lines. Thus, rhIL- 10 appears to inhibit HIV replication predominantly in cells of the M/M lineage. This effect may serve to reduce viral production in patients with AIDS. However, additional studies will be needed to more precisely define its physiologic role in this disease.


2021 ◽  
Author(s):  
Setu M. Vora ◽  
Pietro Fontana ◽  
Valerie Leger ◽  
Ying Zhang ◽  
Tian-Min Fu ◽  
...  

SARS-CoV-2 is a highly pathogenic virus that evades anti-viral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the mRNA entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the SL1 region of the SARS-CoV-2 5’ UTR is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides (ASOs) inhibits viral translation and makes SARS-CoV-2 5’ UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus’ own virulence mechanism against itself could force a critical trade off between drug resistance and pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document