scholarly journals Risk prediction with office and ambulatory blood pressure using artificial intelligence

Author(s):  
Pedro Guimarães ◽  
Andreas Keller ◽  
Michael Böhm ◽  
Lucas Lauder ◽  
José L. Ayala ◽  
...  

AbstractBackgroundTo develop and validate a novel, machine learning-derived model for prediction of cardiovascular (CV) mortality risk using office (OBP) and ambulatory blood pressure (ABP), to compare its performance with existing risk scores, and to assess the possibility of predicting ABP phenotypes (i.e. white-coat, ambulatory and masked hypertension) utilizing clinical variables.MethodsUsing data from 63,910 patients enrolled in the Spanish ABP monitoring registry, machine-learning approaches (logistic regression, support vector machine, gradient boosted decision trees, and deep neural networks) and stepwise forward feature selection were used for the classification of the data.ResultsOver a median follow-up of 4.7 years, 3,808 deaths occurred from which 1,295 were from CV causes. The performance for all tested classifiers increased while adding up to 10 features and converged thereafter. For the prediction of CV mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP (CV-MortalityOBP) and ABP (CV-MortalityABP) outperformed all other risk scores. The area under the curve (AUC) achieved by the novel approach, using OBP variables only, was already significantly higher when compared with the AUC of Framingham score (0.685 vs 0.659, p = 1.97×10−22), the SCORE (0.679 vs 0.613, p = 6.21×10−22), and ASCVD (0.722 vs 0.639, p = 8.03×10−30) risk score. However, prediction of CV mortality with ABP instead of OBP data led to a significant increase in AUC (0.781 vs 0.752, p = 1.73×10−42), accuracy, balanced accuracy and sensitivity. The sensitivity and specificity for detection of ambulatory, masked, and white-coat hypertension ranged between 0.653-0.661 and 0.573-0.651, respectively.ConclusionWe developed a novel risk calculator for CV death using artificial intelligence based on a large cohort of patients included in the Spanish ABP monitoring registry. The receiver operating characteristic curves for CV-MortalityOBP and CV-MortalityABP with deep neural networks models outperformed all other risk metrics. Prediction of CV mortality using ABP data led to a significant increase in performance metrics. The prediction of ambulatory phenotypes using clinical characteristics, including OBP, was limited.

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


2021 ◽  
Author(s):  
Anwaar Ulhaq

Machine learning has grown in popularity and effectiveness over the last decade. It has become possible to solve complex problems, especially in artificial intelligence, due to the effectiveness of deep neural networks. While numerous books and countless papers have been written on deep learning, new researchers want to understand the field's history, current trends and envision future possibilities. This review paper will summarise the recorded work that resulted in such success and address patterns and prospects.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yashodhan M. Bichu ◽  
Ismaeel Hansa ◽  
Aditi Y. Bichu ◽  
Pratik Premjani ◽  
Carlos Flores-Mir ◽  
...  

Abstract Introduction This scoping review aims to provide an overview of the existing evidence on the use of artificial intelligence (AI) and machine learning (ML) in orthodontics, its translation into clinical practice, and what limitations do exist that have precluded their envisioned application. Methods A scoping review of the literature was carried out following the PRISMA-ScR guidelines. PubMed was searched until July 2020. Results Sixty-two articles fulfilled the inclusion criteria. A total of 43 out of the 62 studies (69.35%) were published this last decade. The majority of these studies were from the USA (11), followed by South Korea (9) and China (7). The number of studies published in non-orthodontic journals (36) was more extensive than in orthodontic journals (26). Artificial Neural Networks (ANNs) were found to be the most commonly utilized AI/ML algorithm (13 studies), followed by Convolutional Neural Networks (CNNs), Support Vector Machine (SVM) (9 studies each), and regression (8 studies). The most commonly studied domains were diagnosis and treatment planning—either broad-based or specific (33), automated anatomic landmark detection and/or analyses (19), assessment of growth and development (4), and evaluation of treatment outcomes (2). The different characteristics and distribution of these studies have been displayed and elucidated upon therein. Conclusion This scoping review suggests that there has been an exponential increase in the number of studies involving various orthodontic applications of AI and ML. The most commonly studied domains were diagnosis and treatment planning, automated anatomic landmark detection and/or analyses, and growth and development assessment.


In the first wave of artificial intelligence (AI), rule-based expert systems were developed, with modest success, to help generalists who lacked expertise in a specific domain. The second wave of AI, originally called artificial neural networks but now described as machine learning, began to have an impact with multilayer networks in the 1980s. Deep learning, which enables automated feature discovery, has enjoyed spectacular success in several medical disciplines, including cardiology, from automated image analysis to the identification of the electrocardiographic signature of atrial fibrillation during sinus rhythm. Machine learning is now embedded within the NHS Long-Term Plan in England, but its widespread adoption may be limited by the “black-box” nature of deep neural networks.


2020 ◽  
Author(s):  
Floris Ernst ◽  
Achim Schweikard

Artificial intelligence will change our lives forever - both at work and in our private lives. But how exactly does machine learning work? Two professors from Lübeck explore this question. In their English textbook they teach the necessary basics for the use of Support Vector Machines, for example, by explaining linear programming, the Lagrange multiplier, kernels and the SMO algorithm. They also deal with neural networks, evolutionary algorithms and Bayesian networks. Definitions are highlighted in the book and tasks invite readers to actively participate. The textbook is aimed at students of computer science, engineering and natural sciences, especially in the fields of robotics, artificial intelligence and mathematics.


Author(s):  
Kijpokin Kasemsap

This chapter explains the Artificial Intelligence (AI) techniques in terms of Artificial Neural Networks (ANNs), fuzzy logic, expert systems, machine learning, Genetic Programming (GP), Evolutionary Polynomial Regression (EPR), and Support Vector Machine (SVM); the AI applications in modern education; the AI applications in software engineering development; the AI applications in Content-Based Image Retrieval (CBIR); and the multifaceted applications of AI in the digital age. AI is a branch of science which deals with helping machines find the suitable solutions to complex problems in a more human-like manner. AI technologies bring more complex data-analysis features to the existing applications in various industries and greatly contribute to management's organization, planning, and controlling operations, and will continue to do so with more frequency as programs are refined.


2020 ◽  
Author(s):  
Thomas R. Lane ◽  
Daniel H. Foil ◽  
Eni Minerali ◽  
Fabio Urbina ◽  
Kimberley M. Zorn ◽  
...  

<p>Machine learning methods are attracting considerable attention from the pharmaceutical industry for use in drug discovery and applications beyond. In recent studies we have applied multiple machine learning algorithms, modeling metrics and in some cases compared molecular descriptors to build models for individual targets or properties on a relatively small scale. Several research groups have used large numbers of datasets from public databases such as ChEMBL in order to evaluate machine learning methods of interest to them. The largest of these types of studies used on the order of 1400 datasets. We have now extracted well over 5000 datasets from CHEMBL for use with the ECFP6 fingerprint and comparison of our proprietary software Assay Central<sup>TM</sup> with random forest, k-Nearest Neighbors, support vector classification, naïve Bayesian, AdaBoosted decision trees, and deep neural networks (3 levels). Model performance <a>was</a> assessed using an array of five-fold cross-validation metrics including area-under-the-curve, F1 score, Cohen’s kappa and Matthews correlation coefficient. <a>Based on ranked normalized scores for the metrics or datasets all methods appeared comparable while the distance from the top indicated Assay Central<sup>TM</sup> and support vector classification were comparable. </a>Unlike prior studies which have placed considerable emphasis on deep neural networks (deep learning), no advantage was seen in this case where minimal tuning was performed of any of the methods. If anything, Assay Central<sup>TM</sup> may have been at a slight advantage as the activity cutoff for each of the over 5000 datasets representing over 570,000 unique compounds was based on Assay Central<sup>TM</sup>performance, but support vector classification seems to be a strong competitor. We also apply Assay Central<sup>TM</sup> to prospective predictions for PXR and hERG to further validate these models. This work currently appears to be the largest comparison of machine learning algorithms to date. Future studies will likely evaluate additional databases, descriptors and algorithms, as well as further refining methods for evaluating and comparing models. </p><p><b> </b></p>


2021 ◽  
Vol 9 (5) ◽  
pp. 33-43
Author(s):  
Ashraf Nabil ◽  
Ayman Kassem

Autonomous Driving is one of the difficult problems faced the automotive applications. Nowadays, it is restricted due to the presence of some laws that prevent cars from being fully autonomous for the fear of accidents occurrence. Researchers try to improve the accuracy and safety of their models with the aim of having a strong push against these restricted Laws. Autonomous driving is a sought-after solution which isn’t easily solved by classical approaches. Deep Learning is considered as a strong Artificial Intelligence paradigm which can teach machines how to behave in difficult situations. It proved its success in many differ domains, but it still has sometime in the automotive applications. The presented work will use the end-to-end deep machine learning field in order to reach to our goal of having Full Autonomous Driving Vehicle that can behave correctly in different scenarios. CARLA simulator will be used to learn and test the deep neural networks. Results will show not only performance on CARLA’s simulator as an end-to-end solution for autonomous driving, but also how the same approach can be used on one of the most popular real datasets of automotive that includes camera images with the corresponding driver’s control action.


2020 ◽  
Vol 3 ◽  
Author(s):  
Frank Emmert-Streib ◽  
Olli Yli-Harja ◽  
Matthias Dehmer

The field artificial intelligence (AI) was founded over 65 years ago. Starting with great hopes and ambitious goals the field progressed through various stages of popularity and has recently undergone a revival through the introduction of deep neural networks. Some problems of AI are that, so far, neither the “intelligence” nor the goals of AI are formally defined causing confusion when comparing AI to other fields. In this paper, we present a perspective on the desired and current status of AI in relation to machine learning and statistics and clarify common misconceptions and myths. Our discussion is intended to lift the veil of vagueness surrounding AI to reveal its true countenance.


Sign in / Sign up

Export Citation Format

Share Document