scholarly journals ARF1 dimerization is essential for vesicle trafficking and dependent on activation by ARF-GEF dimers in Arabidopsis

2020 ◽  
Author(s):  
Sabine Brumm ◽  
Mads Eggert Nielsen ◽  
Sandra Richter ◽  
Hauke Beckmann ◽  
York-Dieter Stierhof ◽  
...  

AbstractMembrane traffic maintains the organization of the eukaryotic cell and delivers cargo proteins to their subcellular destinations such as sites of action or degradation. Membrane vesicle formation requires ARF GTPase activation by the SEC7 domain of ARF guanine-nucleotide exchange factors (ARF-GEFs), resulting in the recruitment of coat proteins by GTP-bound ARFs. In vitro exchange assays were done with monomeric proteins, although ARF-GEFs have been shown to form dimers in vivo. This feature is conserved across the eukaryotes, however its biological significance is unknown. Here we demonstrate ARF1 dimerization in vivo and we show that ARF-GEF dimers mediate ARF1 dimer formation. Mutational disruption of ARF1 dimers interfered with ARF1-dependent trafficking but not coat protein recruitment in Arabidopsis. Mutations disrupting simultaneous binding of two ARF1•GDPs by the two SEC7 domains of GNOM ARF-GEF dimer prevented stable interaction of ARF1 with ARF-GEF and thus, efficient ARF1 activation. Our results suggest a model of activation-dependent dimerization of membrane-inserted ARF1•GTP molecules required for coated membrane vesicle formation. Considering the evolutionary conservation of ARFs and ARF-GEFs, this initial regulatory step of membrane trafficking might well occur in eukaryotes in general.

1998 ◽  
Vol 142 (2) ◽  
pp. 391-402 ◽  
Author(s):  
Chean Eng Ooi ◽  
Esteban C. Dell'Angelica ◽  
Juan S. Bonifacino

Small GTP-binding proteins such as ADP- ribosylation factor 1 (ARF1) and Sar1p regulate the membrane association of coat proteins involved in intracellular membrane trafficking. ARF1 controls the clathrin coat adaptor AP-1 and the nonclathrin coat COPI, whereas Sar1p controls the nonclathrin coat COPII. In this study, we demonstrate that membrane association of the recently described AP-3 adaptor is regulated by ARF1. Association of AP-3 with membranes in vitro was enhanced by GTPγS and inhibited by brefeldin A (BFA), an inhibitor of ARF1 guanine nucleotide exchange. In addition, recombinant myristoylated ARF1 promoted association of AP-3 with membranes. The role of ARF1 in vivo was examined by assessing AP-3 subcellular localization when the intracellular level of ARF1-GTP was altered through overexpression of dominant ARF1 mutants or ARF1- GTPase-activating protein (GAP). Lowering ARF1-GTP levels resulted in redistribution of AP-3 from punctate membrane-bound structures to the cytosol as seen by immunofluorescence microscopy. In contrast, increasing ARF1-GTP levels prevented redistribution of AP-3 to the cytosol induced by BFA or energy depletion. Similar experiments with mutants of ARF5 and ARF6 showed that these other ARF family members had little or no effect on AP-3. Taken together, our results indicate that membrane recruitment of AP-3 is promoted by ARF1-GTP. This finding suggests that ARF1 is not a regulator of specific coat proteins, but rather is a ubiquitous molecular switch that acts as a transducer of diverse signals influencing coat assembly.


2006 ◽  
Vol 17 (10) ◽  
pp. 4318-4329 ◽  
Author(s):  
Morten K. Larsen ◽  
Simon Tuck ◽  
Nils J. Færgeman ◽  
Jens Knudsen

The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydrolysis of acyl-CoA lipid esters. The mechanisms by which these lipid esters are directed to the appropriate membranes in vivo, and their precise roles in vesicle biogenesis, are not yet understood. Here, we present the first report on membrane associated ACBP domain-containing protein-1 (MAA-1), a novel membrane-associated member of the acyl-CoA–binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA–dependent process during vesicle formation.


2019 ◽  
Vol 116 (9) ◽  
pp. 3752-3757 ◽  
Author(s):  
Valerie J. Carabetta ◽  
Todd M. Greco ◽  
Ileana M. Cristea ◽  
David Dubnau

Nε-lysine acetylation is an abundant and dynamic regulatory posttranslational modification that remains poorly characterized in bacteria. In bacteria, hundreds of proteins are known to be acetylated, but the biological significance of the majority of these events remains unclear. Previously, we characterized the Bacillus subtilis acetylome and found that the essential histone-like protein HBsu contains seven previously unknown acetylation sites in vivo. Here, we investigate whether acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Using mutations that mimic the acetylated and unacetylated forms of the protein, we show that the inability to acetylate key HBsu lysine residues results in a more compacted nucleoid. We further investigated the mechanism of HBsu acetylation. We screened deletions of the ∼50 putative GNAT domain-encoding genes in B. subtilis for their effects on DNA compaction, and identified five candidates that may encode acetyltransferases acting on HBsu. Genetic bypass experiments demonstrated that two of these, YfmK and YdgE, can acetylate Hbsu, and their potential sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro, suggesting that it is the second identified protein acetyltransferase in B. subtilis. We propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogous to the role of histone acetylation in eukaryotes.


2005 ◽  
Vol 33 (4) ◽  
pp. 639-642 ◽  
Author(s):  
J.G. Donaldson ◽  
A. Honda

Arfs are a family of Ras-related GTP-binding proteins that function in the regulation of membrane trafficking and structure. The six mammalian Arf proteins are expressed ubiquitously and so it is anticipated that each will have a distinct localization and function within the cell. It has been assumed that much of this specificity will be defined by determining which regulators of Arfs, the GEFs (guanine nucleotide-exchange factors) and GAPs (GTPase-activating proteins) function with which Arf proteins. Although in vitro assays may indicate Arf preferences for the numerous Arf GEFs and GAPs that have been identified, in the cell the different Arfs, GEFs and GAPs are targeted to specific compartments where they carry out their functions. We have embarked on studies to define regions of the Arf1 and Arf6 proteins that determine their sites of action and specific activities at the Golgi and plasma membrane respectively. Chimaeras were made between Arf1 and Arf6 in order to identify regions of the protein that contributed to targeting and function. Whereas Arf6 is targeted to the plasma membrane through multiple regions along the protein, we have found a Golgi-targeting region in Arf1 that is sufficient to target Arf6 to the Golgi complex.


2019 ◽  
Vol 75 (5) ◽  
pp. 467-474 ◽  
Author(s):  
Evgenia A. Markova ◽  
Giulia Zanetti

Coat proteins mediate vesicular transport between intracellular compartments, which is essential for the distribution of molecules within the eukaryotic cell. The global arrangement of coat proteins on the membrane is key to their function, and cryo-electron tomography and subtomogram averaging have been used to study membrane-bound coat proteins, providing crucial structural insight. This review outlines a workflow for the structural elucidation of coat proteins, incorporating recent developments in the collection and processing of cryo-electron tomography data. Recent work on coat protein I, coat protein II and retromer performed on in vitro reconstitutions or in situ is summarized. These studies have answered long-standing questions regarding the mechanisms of membrane binding, polymerization and assembly regulation of coat proteins.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1784-1792 ◽  
Author(s):  
Gianluca Civenni ◽  
Samuel T. Test ◽  
Urs Brodbeck ◽  
Peter Bütikofer

Abstract In many different cells, glycosylphosphatidylinositol (GPI)-anchored molecules are clustered in membrane microdomains that resist extraction by detergents at 4°C. In this report, we identified the presence of such domains in human erythrocytes and examined the ability of exogenously-added GPI-anchored molecules to colocalize with the endogenous GPI-anchored proteins in these detergent-insoluble complexes. We found that the addition to human erythrocytes of three purified GPI-anchored proteins having different GPI lipid moieties resulted in their efficient and correct incorporation into the membrane. The extent of membrane insertion was dependent on the intactness of the GPI lipid moiety. However, unlike the endogenous GPI-anchored proteins, the in vitro incorporated GPI molecules were not resistant to membrane extraction by Triton X-100 at 4°C. In addition, in contrast to the endogenous GPI-anchored proteins, they were not preferentially released from erythrocytes during vesiculation induced by calcium loading of the cells. These results suggest that in vitro incorporated GPI-linked molecules are excluded from pre-existing GPI-enriched membrane areas in human erythrocytes and that these microdomains may represent the sites of membrane vesicle formation.


2010 ◽  
Vol 21 (13) ◽  
pp. 2285-2296 ◽  
Author(s):  
Laëtitia Chotard ◽  
Ashwini K. Mishra ◽  
Marc-André Sylvain ◽  
Simon Tuck ◽  
David G. Lambright ◽  
...  

During endosome maturation the early endosomal Rab5 GTPase is replaced with the late endosomal Rab7 GTPase. It has been proposed that active Rab5 can recruit and activate Rab7, which in turn could inactivate and remove Rab5. However, many of the Rab5 and Rab7 regulators that mediate endosome maturation are not known. Here, we identify Caenorhabditis elegans TBC-2, a conserved putative Rab GTPase-activating protein (GAP), as a regulator of endosome to lysosome trafficking in several tissues. We show that tbc-2 mutant animals accumulate enormous RAB-7–positive late endosomes in the intestine containing refractile material. RAB-5, RAB-7, and components of the homotypic fusion and vacuole protein sorting (HOPS) complex, a RAB-7 effector/putative guanine nucleotide exchange factor (GEF), are required for the tbc-2(−) intestinal phenotype. Expression of activated RAB-5 Q78L in the intestine phenocopies the tbc-2(−) large late endosome phenotype in a RAB-7 and HOPS complex-dependent manner. TBC-2 requires the catalytic arginine-finger for function in vivo and displays the strongest GAP activity on RAB-5 in vitro. However, TBC-2 colocalizes primarily with RAB-7 on late endosomes and requires RAB-7 for membrane localization. Our data suggest that TBC-2 functions on late endosomes to inactivate RAB-5 during endosome maturation.


2006 ◽  
Vol 26 (14) ◽  
pp. 5249-5258 ◽  
Author(s):  
Vincenzo Coppola ◽  
Colleen A. Barrick ◽  
Sara Bobisse ◽  
Maria Cecilia Rodriguez-Galan ◽  
Michela Pivetta ◽  
...  

ABSTRACT Trafficking and cell adhesion are key properties of cells of the immune system. However, the molecular pathways that control these cellular behaviors are still poorly understood. Cybr is a scaffold protein highly expressed in the hematopoietic/immune system whose physiological role is still unknown. In vitro studies have shown it regulates LFA-1, a crucial molecule in lymphocyte attachment and migration. Cybr also binds cytohesin-1, a guanine nucleotide exchange factor for the ARF GTPases, which affects actin cytoskeleton remodeling during cell migration. Here we show that expression of Cybr in vivo is differentially modulated by type 1 cytokines during lymphocyte maturation. In mice, Cybr deficiency negatively affects leukocytes circulating in blood and lymphocytes present in the lymph nodes. Moreover, in a Th1-polarized mouse model, lymphocyte trafficking is impaired by loss of Cybr, and Cybr-deficient mice with aseptic peritonitis have fewer cells than controls present in the peritoneal cavity, as well as fewer leukocytes leaving the bloodstream. Mutant mice injected with Moloney murine sarcoma/leukemia virus develop significantly larger tumors than wild-type mice and have reduced lymph node enlargement, suggesting reduced cytotoxic T-lymphocyte migration. Taken together, these data support a role for Cybr in leukocyte trafficking, especially in response to proinflammatory cytokines in stress conditions.


2011 ◽  
Vol 15 (03) ◽  
pp. 174-180 ◽  
Author(s):  
Lan Ying Wen ◽  
Su-Mi Bae ◽  
Jin Hwan Do ◽  
Kye-Shin Park ◽  
Woong Shick Ahn

Photodynamic therapy (PDT) is a promising treatment for cancer that has been recently accepted in the clinic. In this study, we examined a biological significance of PDT with a chlorin-based photosensitizer, Photodithazine, on cervical cancer model. When human papillomavirus type 16 (HPV16)- transformed mouse TC-1 cells were exposed to varied doses of Photodithazine with light irradiation (6.25 J/cm2), the significant growth inhibition of TC-1 cells was observed at 0.75 μg/mL of Photodithazine. The damaged cells by Photodithazine/PDT were categorized to be early and late apoptosis, as determined by annexin V staining. Photodithazine was primarily localized at lysosome apparatus within TC-1 cells while it was rapidly accumulated and sustained for initial 3 h in tumor tissue of TC-1 tumor bearing mice after IV injection. The tumor growth inhibition by Photodithazine/PDT with light irradiation (300 J/cm2) was examined after injection of various concentration of Photodithazine in tumor mice system. Our results show that Photodithazine/PDT might have significant advantages in the selective killing of tumor lesions in HPV 16 E6/E7 associated cervical cancer model, both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document