scholarly journals OpenMonkeyStudio: Automated Markerless Pose Estimation in Freely Moving Macaques

Author(s):  
Praneet C. Bala ◽  
Benjamin R. Eisenreich ◽  
Seng Bum Michael Yoo ◽  
Benjamin Y. Hayden ◽  
Hyun Soo Park ◽  
...  

The rhesus macaque is an important model species in several branches of science, including neuroscience, psychology, ethology, and several fields of medicine. The utility of the macaque model would be greatly enhanced by the ability to precisely measure its behavior, specifically, its pose (position of multiple major body landmarks) in freely moving conditions. Existing approaches do not provide sufficient tracking. Here, we describe OpenMonkeyStudio, a novel deep learning-based markerless motion capture system for estimating 3D pose in freely moving macaques in large unconstrained environments. Our system makes use of 62 precisely calibrated and synchronized machine vision cameras that encircle an open 2.45m×2.45m×2.75m enclosure. The resulting multiview image streams allow for novel data augmentation via 3D reconstruction of hand-annotated images that in turn train a robust view-invariant deep neural network model. This view invariance represents an important advance over previous markerless 2D tracking approaches, and allows fully automatic pose inference on unconstrained natural motion. We show that OpenMonkeyStudio can be used to accurately recognize actions and track two monkey social interactions without human intervention. We also make the training data (195,228 images) and trained detection model publicly available.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Praneet C. Bala ◽  
Benjamin R. Eisenreich ◽  
Seng Bum Michael Yoo ◽  
Benjamin Y. Hayden ◽  
Hyun Soo Park ◽  
...  

Abstract The rhesus macaque is an important model species in several branches of science, including neuroscience, psychology, ethology, and medicine. The utility of the macaque model would be greatly enhanced by the ability to precisely measure behavior in freely moving conditions. Existing approaches do not provide sufficient tracking. Here, we describe OpenMonkeyStudio, a deep learning-based markerless motion capture system for estimating 3D pose in freely moving macaques in large unconstrained environments. Our system makes use of 62 machine vision cameras that encircle an open 2.45 m × 2.45 m × 2.75 m enclosure. The resulting multiview image streams allow for data augmentation via 3D-reconstruction of annotated images to train a robust view-invariant deep neural network. This view invariance represents an important advance over previous markerless 2D tracking approaches, and allows fully automatic pose inference on unconstrained natural motion. We show that OpenMonkeyStudio can be used to accurately recognize actions and track social interactions.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Rania Almajalid ◽  
Ming Zhang ◽  
Juan Shan

In the medical sector, three-dimensional (3D) images are commonly used like computed tomography (CT) and magnetic resonance imaging (MRI). The 3D MRI is a non-invasive method of studying the soft-tissue structures in a knee joint for osteoarthritis studies. It can greatly improve the accuracy of segmenting structures such as cartilage, bone marrow lesion, and meniscus by identifying the bone structure first. U-net is a convolutional neural network that was originally designed to segment the biological images with limited training data. The input of the original U-net is a single 2D image and the output is a binary 2D image. In this study, we modified the U-net model to identify the knee bone structures using 3D MRI, which is a sequence of 2D slices. A fully automatic model has been proposed to detect and segment knee bones. The proposed model was trained, tested, and validated using 99 knee MRI cases where each case consists of 160 2D slices for a single knee scan. To evaluate the model’s performance, the similarity, dice coefficient (DICE), and area error metrics were calculated. Separate models were trained using different knee bone components including tibia, femur, patella, as well as a combined model for segmenting all the knee bones. Using the whole MRI sequence (160 slices), the method was able to detect the beginning and ending bone slices first, and then segment the bone structures for all the slices in between. On the testing set, the detection model accomplished 98.79% accuracy and the segmentation model achieved DICE 96.94% and similarity 93.98%. The proposed method outperforms several state-of-the-art methods, i.e., it outperforms U-net by 3.68%, SegNet by 14.45%, and FCN-8 by 2.34%, in terms of DICE score using the same dataset.


2020 ◽  
Vol 12 (6) ◽  
pp. 1014
Author(s):  
Jingchao Jiang ◽  
Cheng-Zhi Qin ◽  
Juan Yu ◽  
Changxiu Cheng ◽  
Junzhi Liu ◽  
...  

Reference objects in video images can be used to indicate urban waterlogging depths. The detection of reference objects is the key step to obtain waterlogging depths from video images. Object detection models with convolutional neural networks (CNNs) have been utilized to detect reference objects. These models require a large number of labeled images as the training data to ensure the applicability at a city scale. However, it is hard to collect a sufficient number of urban flooding images containing valuable reference objects, and manually labeling images is time-consuming and expensive. To solve the problem, we present a method to synthesize image data as the training data. Firstly, original images containing reference objects and original images with water surfaces are collected from open data sources, and reference objects and water surfaces are cropped from these original images. Secondly, the reference objects and water surfaces are further enriched via data augmentation techniques to ensure the diversity. Finally, the enriched reference objects and water surfaces are combined to generate a synthetic image dataset with annotations. The synthetic image dataset is further used for training an object detection model with CNN. The waterlogging depths are calculated based on the reference objects detected by the trained model. A real video dataset and an artificial image dataset are used to evaluate the effectiveness of the proposed method. The results show that the detection model trained using the synthetic image dataset can effectively detect reference objects from images, and it can achieve acceptable accuracies of waterlogging depths based on the detected reference objects. The proposed method has the potential to monitor waterlogging depths at a city scale.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1562 ◽  
Author(s):  
Xiaoming Lv ◽  
Fajie Duan ◽  
Jia-jia Jiang ◽  
Xiao Fu ◽  
Lin Gan

Metallic surface defect detection is an essential and necessary process to control the qualities of industrial products. However, due to the limited data scale and defect categories, existing defect datasets are generally unavailable for the deployment of the detection model. To address this problem, we contribute a new dataset called GC10-DET for large-scale metallic surface defect detection. The GC10-DET dataset has great challenges on defect categories, image number, and data scale. Besides, traditional detection approaches are poor in both efficiency and accuracy for the complex real-world environment. Thus, we also propose a novel end-to-end defect detection network (EDDN) based on the Single Shot MultiBox Detector. The EDDN model can deal with defects with different scales. Furthermore, a hard negative mining method is designed to alleviate the problem of data imbalance, while some data augmentation methods are adopted to enrich the training data for the expensive data collection problem. Finally, the extensive experiments on two datasets demonstrate that the proposed method is robust and can meet accuracy requirements for metallic defect detection.


2021 ◽  
Vol 11 (16) ◽  
pp. 7188
Author(s):  
Tieming Chen ◽  
Yunpeng Chen ◽  
Mingqi Lv ◽  
Gongxun He ◽  
Tiantian Zhu ◽  
...  

Malicious HTTP traffic detection plays an important role in web application security. Most existing work applies machine learning and deep learning techniques to build the malicious HTTP traffic detection model. However, they still suffer from the problems of huge training data collection cost and low cross-dataset generalization ability. Aiming at these problems, this paper proposes DeepPTSD, a deep learning method for payload based malicious HTTP traffic detection. First, it treats the malicious HTTP traffic detection as a text classification problem and trains the initial detection model using TextCNN on a public dataset, and then adapts the initial detection model to the target dataset based on a transfer learning algorithm. Second, in the transfer learning procedure, it uses a semi-supervised learning algorithm to accomplish the model adaptation task. The semi-supervised learning algorithm enhances the target dataset based on a HTTP payload data augmentation mechanism to exploit both the labeled and unlabeled data. We evaluate DeepPTSD on two real HTTP traffic datasets. The results show that DeepPTSD has competitive performance under the small data condition.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Michał Klimont ◽  
Mateusz Flieger ◽  
Jacek Rzeszutek ◽  
Joanna Stachera ◽  
Aleksandra Zakrzewska ◽  
...  

Hydrocephalus is a common neurological condition that can have traumatic ramifications and can be lethal without treatment. Nowadays, during therapy radiologists have to spend a vast amount of time assessing the volume of cerebrospinal fluid (CSF) by manual segmentation on Computed Tomography (CT) images. Further, some of the segmentations are prone to radiologist bias and high intraobserver variability. To improve this, researchers are exploring methods to automate the process, which would enable faster and more unbiased results. In this study, we propose the application of U-Net convolutional neural network in order to automatically segment CT brain scans for location of CSF. U-Net is a neural network that has proven to be successful for various interdisciplinary segmentation tasks. We optimised training using state of the art methods, including “1cycle” learning rate policy, transfer learning, generalized dice loss function, mixed float precision, self-attention, and data augmentation. Even though the study was performed using a limited amount of data (80 CT images), our experiment has shown near human-level performance. We managed to achieve a 0.917 mean dice score with 0.0352 standard deviation on cross validation across the training data and a 0.9506 mean dice score on a separate test set. To our knowledge, these results are better than any known method for CSF segmentation in hydrocephalic patients, and thus, it is promising for potential practical applications.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1052
Author(s):  
Leang Sim Nguon ◽  
Kangwon Seo ◽  
Jung-Hyun Lim ◽  
Tae-Jun Song ◽  
Sung-Hyun Cho ◽  
...  

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.


2020 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Wei Zhao ◽  
William Yamada ◽  
Tianxin Li ◽  
Matthew Digman ◽  
Troy Runge

In recent years, precision agriculture has been researched to increase crop production with less inputs, as a promising means to meet the growing demand of agriculture products. Computer vision-based crop detection with unmanned aerial vehicle (UAV)-acquired images is a critical tool for precision agriculture. However, object detection using deep learning algorithms rely on a significant amount of manually prelabeled training datasets as ground truths. Field object detection, such as bales, is especially difficult because of (1) long-period image acquisitions under different illumination conditions and seasons; (2) limited existing prelabeled data; and (3) few pretrained models and research as references. This work increases the bale detection accuracy based on limited data collection and labeling, by building an innovative algorithms pipeline. First, an object detection model is trained using 243 images captured with good illimitation conditions in fall from the crop lands. In addition, domain adaptation (DA), a kind of transfer learning, is applied for synthesizing the training data under diverse environmental conditions with automatic labels. Finally, the object detection model is optimized with the synthesized datasets. The case study shows the proposed method improves the bale detecting performance, including the recall, mean average precision (mAP), and F measure (F1 score), from averages of 0.59, 0.7, and 0.7 (the object detection) to averages of 0.93, 0.94, and 0.89 (the object detection + DA), respectively. This approach could be easily scaled to many other crop field objects and will significantly contribute to precision agriculture.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Sign in / Sign up

Export Citation Format

Share Document