scholarly journals A Payload Based Malicious HTTP Traffic Detection Method Using Transfer Semi-Supervised Learning

2021 ◽  
Vol 11 (16) ◽  
pp. 7188
Author(s):  
Tieming Chen ◽  
Yunpeng Chen ◽  
Mingqi Lv ◽  
Gongxun He ◽  
Tiantian Zhu ◽  
...  

Malicious HTTP traffic detection plays an important role in web application security. Most existing work applies machine learning and deep learning techniques to build the malicious HTTP traffic detection model. However, they still suffer from the problems of huge training data collection cost and low cross-dataset generalization ability. Aiming at these problems, this paper proposes DeepPTSD, a deep learning method for payload based malicious HTTP traffic detection. First, it treats the malicious HTTP traffic detection as a text classification problem and trains the initial detection model using TextCNN on a public dataset, and then adapts the initial detection model to the target dataset based on a transfer learning algorithm. Second, in the transfer learning procedure, it uses a semi-supervised learning algorithm to accomplish the model adaptation task. The semi-supervised learning algorithm enhances the target dataset based on a HTTP payload data augmentation mechanism to exploit both the labeled and unlabeled data. We evaluate DeepPTSD on two real HTTP traffic datasets. The results show that DeepPTSD has competitive performance under the small data condition.

Author(s):  
Yuqi Yu ◽  
Hanbing Yan ◽  
Yuan Ma ◽  
Hao Zhou ◽  
Hongchao Guan

AbstractHypertext Transfer Protocol (HTTP) accounts for a large portion of Internet application-layer traffic. Since the payload of HTTP traffic can record website status and user request information, many studies use HTTP protocol traffic for web application attack detection. In this work, we propose DeepHTTP, an HTTP traffic detection framework based on deep learning. Unlike previous studies, this framework not only performs malicious traffic detection but also uses the deep learning model to mine malicious fields of the traffic payload. The detection model is called AT-Bi-LSTM, which is based on Bidirectional Long Short-Term Memory (Bi-LSTM) with attention mechanism. The attention mechanism can improve the discriminative ability and make the result interpretable. To enhance the generalization ability of the model, this paper proposes a novel feature extraction method. Experiments show that DeepHTTP has an excellent performance in malicious traffic discrimination and pattern mining.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1497
Author(s):  
Harold Achicanoy ◽  
Deisy Chaves ◽  
Maria Trujillo

Deep learning applications on computer vision involve the use of large-volume and representative data to obtain state-of-the-art results due to the massive number of parameters to optimise in deep models. However, data are limited with asymmetric distributions in industrial applications due to rare cases, legal restrictions, and high image-acquisition costs. Data augmentation based on deep learning generative adversarial networks, such as StyleGAN, has arisen as a way to create training data with symmetric distributions that may improve the generalisation capability of built models. StyleGAN generates highly realistic images in a variety of domains as a data augmentation strategy but requires a large amount of data to build image generators. Thus, transfer learning in conjunction with generative models are used to build models with small datasets. However, there are no reports on the impact of pre-trained generative models, using transfer learning. In this paper, we evaluate a StyleGAN generative model with transfer learning on different application domains—training with paintings, portraits, Pokémon, bedrooms, and cats—to generate target images with different levels of content variability: bean seeds (low variability), faces of subjects between 5 and 19 years old (medium variability), and charcoal (high variability). We used the first version of StyleGAN due to the large number of publicly available pre-trained models. The Fréchet Inception Distance was used for evaluating the quality of synthetic images. We found that StyleGAN with transfer learning produced good quality images, being an alternative for generating realistic synthetic images in the evaluated domains.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xieyi Chen ◽  
Dongyun Wang ◽  
Jinjun Shao ◽  
Jun Fan

To automatically detect plastic gasket defects, a set of plastic gasket defect visual detection devices based on GoogLeNet Inception-V2 transfer learning was designed and established in this study. The GoogLeNet Inception-V2 deep convolutional neural network (DCNN) was adopted to extract and classify the defect features of plastic gaskets to solve the problem of their numerous surface defects and difficulty in extracting and classifying the features. Deep learning applications require a large amount of training data to avoid model overfitting, but there are few datasets of plastic gasket defects. To address this issue, data augmentation was applied to our dataset. Finally, the performance of the three convolutional neural networks was comprehensively compared. The results showed that the GoogLeNet Inception-V2 transfer learning model had a better performance in less time. It means it had higher accuracy, reliability, and efficiency on the dataset used in this paper.


Author(s):  
Guokai Liu ◽  
Liang Gao ◽  
Weiming Shen ◽  
Andrew Kusiak

Abstract Condition monitoring and fault diagnosis are of great interest to the manufacturing industry. Deep learning algorithms have shown promising results in equipment prognostics and health management. However, their success has been hindered by excessive training time. In addition, deep learning algorithms face the domain adaptation dilemma encountered in dynamic application environments. The emerging concept of broad learning addresses the training time and the domain adaptation issue. In this paper, a broad transfer learning algorithm is proposed for the classification of bearing faults. Data of the same frequency is used to construct one- and two-dimensional training data sets to analyze performance of the broad transfer and deep learning algorithms. A broad learning algorithm contains two main layers, an augmented feature layer and a classification layer. The broad learning algorithm with a sparse auto-encoder is employed to extract features. The optimal solution of a redefined cost function with a limited sample size to ten per class in the target domain offers the classifier of broad learning domain adaptation capability. The effectiveness of the proposed algorithm has been demonstrated on a benchmark dataset. Computational experiments have demonstrated superior efficiency and accuracy of the proposed algorithm over the deep learning algorithms tested.


2020 ◽  
Author(s):  
Yun Zhang ◽  
Ling Wang ◽  
Xinqiao Wang ◽  
Chengyun Zhang ◽  
Jiamin Ge ◽  
...  

<p><b>Abstract:</b> Effective and rapid deep learning method to predict chemical reactions contributes to the research and development of organic chemistry and drug discovery. Despite the outstanding capability of deep learning in retrosynthesis and forward synthesis, predictions based on small chemical datasets generally result in low accuracy due to an insufficiency of reaction examples. Here, we introduce a new state art of method, which integrates transfer learning with transformer model to predict the outcomes of the Baeyer-Villiger reaction which is a representative small dataset reaction. The results demonstrate that introducing transfer learning strategy markedly improves the top-1 accuracy of the transformer-transfer learning model (81.8%) over that of the transformer-baseline model (58.4%). Moreover, we further introduce data augmentation to the input reaction SMILES, which allows for better performance and improves the accuracy of the transformer-transfer learning model (86.7%). In summary, both transfer learning and data augmentation methods significantly improve the predictive performance of transformer model, which are powerful methods used in chemistry field to eliminate the restriction of limited training data.</p>


2020 ◽  
Author(s):  
Yun Zhang ◽  
Ling Wang ◽  
Xinqiao Wang ◽  
Chengyun Zhang ◽  
Jiamin Ge ◽  
...  

<p><b>Abstract:</b> Effective and rapid deep learning method to predict chemical reactions contributes to the research and development of organic chemistry and drug discovery. Despite the outstanding capability of deep learning in retrosynthesis and forward synthesis, predictions based on small chemical datasets generally result in low accuracy due to an insufficiency of reaction examples. Here, we introduce a new state art of method, which integrates transfer learning with transformer model to predict the outcomes of the Baeyer-Villiger reaction which is a representative small dataset reaction. The results demonstrate that introducing transfer learning strategy markedly improves the top-1 accuracy of the transformer-transfer learning model (81.8%) over that of the transformer-baseline model (58.4%). Moreover, we further introduce data augmentation to the input reaction SMILES, which allows for better performance and improves the accuracy of the transformer-transfer learning model (86.7%). In summary, both transfer learning and data augmentation methods significantly improve the predictive performance of transformer model, which are powerful methods used in chemistry field to eliminate the restriction of limited training data.</p>


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Hyuk-Ju Kwon ◽  
Hwi-Gang Kim ◽  
Sung-Hak Lee

This paper proposes a deep learning algorithm that can improve pill identification performance using limited training data. In general, when individual pills are detected in multiple pill images, the algorithm uses multiple pill images from the learning stage. However, when there is an increase in the number of pill types to be identified, the pill combinations in an image increase exponentially. To detect individual pills in an image that contains multiple pills, we first propose an effective database expansion method for a single pill. Then, the expanded training data are used to improve the detection performance. Our proposed method shows higher performance improvement than the existing algorithms despite the limited imaging and data set size. Our proposed method will help minimize problems, such as loss of productivity and human error, which occur while inspecting dispensed pills.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1972
Author(s):  
Abul Bashar ◽  
Ghazanfar Latif ◽  
Ghassen Ben Brahim ◽  
Nazeeruddin Mohammad ◽  
Jaafar Alghazo

It became apparent that mankind has to learn to live with and adapt to COVID-19, especially because the developed vaccines thus far do not prevent the infection but rather just reduce the severity of the symptoms. The manual classification and diagnosis of COVID-19 pneumonia requires specialized personnel and is time consuming and very costly. On the other hand, automatic diagnosis would allow for real-time diagnosis without human intervention resulting in reduced costs. Therefore, the objective of this research is to propose a novel optimized Deep Learning (DL) approach for the automatic classification and diagnosis of COVID-19 pneumonia using X-ray images. For this purpose, a publicly available dataset of chest X-rays on Kaggle was used in this study. The dataset was developed over three stages in a quest to have a unified COVID-19 entities dataset available for researchers. The dataset consists of 21,165 anterior-to-posterior and posterior-to-anterior chest X-ray images classified as: Normal (48%), COVID-19 (17%), Lung Opacity (28%) and Viral Pneumonia (6%). Data Augmentation was also applied to increase the dataset size to enhance the reliability of results by preventing overfitting. An optimized DL approach is implemented in which chest X-ray images go through a three-stage process. Image Enhancement is performed in the first stage, followed by Data Augmentation stage and in the final stage the results are fed to the Transfer Learning algorithms (AlexNet, GoogleNet, VGG16, VGG19, and DenseNet) where the images are classified and diagnosed. Extensive experiments were performed under various scenarios, which led to achieving the highest classification accuracy of 95.63% through the application of VGG16 transfer learning algorithm on the augmented enhanced dataset with freeze weights. This accuracy was found to be better as compared to the results reported by other methods in the recent literature. Thus, the proposed approach proved superior in performance as compared with that of other similar approaches in the extant literature, and it made a valuable contribution to the body of knowledge. Although the results achieved so far are promising, further work is planned to correlate the results of the proposed approach with clinical observations to further enhance the efficiency and accuracy of COVID-19 diagnosis.


Author(s):  
Yi-Quan Li ◽  
Hao-Sen Chang ◽  
Daw-Tung Lin

In the field of computer vision, large-scale image classification tasks are both important and highly challenging. With the ongoing advances in deep learning and optical character recognition (OCR) technologies, neural networks designed to perform large-scale classification play an essential role in facilitating OCR systems. In this study, we developed an automatic OCR system designed to identify up to 13,070 large-scale printed Chinese characters by using deep learning neural networks and fine-tuning techniques. The proposed framework comprises four components, including training dataset synthesis and background simulation, image preprocessing and data augmentation, the process of training the model, and transfer learning. The training data synthesis procedure is composed of a character font generation step and a background simulation process. Three background models are proposed to simulate the factors of the background noise and anti-counterfeiting patterns on ID cards. To expand the diversity of the synthesized training dataset, rotation and zooming data augmentation are applied. A massive dataset comprising more than 19.6 million images was thus created to accommodate the variations in the input images and improve the learning capacity of the CNN model. Subsequently, we modified the GoogLeNet neural architecture by replacing the FC layer with a global average pooling layer to avoid overfitting caused by a massive amount of training data. Consequently, the number of model parameters was reduced. Finally, we employed the transfer learning technique to further refine the CNN model using a small number of real data samples. Experimental results show that the overall recognition performance of the proposed approach is significantly better than that of prior methods and thus demonstrate the effectiveness of proposed framework, which exhibited a recognition accuracy as high as 99.39% on the constructed real ID card dataset.


Author(s):  
Dan Luo

Background: As known that the semi-supervised algorithm is a classical algorithm in semi-supervised learning algorithm. Methods: In the paper, it proposed improved cooperative semi-supervised learning algorithm, and the algorithm process is presented in detailed, and it is adopted to predict unlabeled electronic components image. Results: In the experiments of classification and recognition of electronic components, it show that through the method the accuracy the proposed algorithm in electron device image recognition can be significantly improved, the improved algorithm can be used in the actual recognition process . Conclusion: With the continuous development of science and technology, machine vision and deep learning will play a more important role in people's life in the future. The subject research based on the identification of the number of components is bound to develop towards the direction of high precision and multi-dimension, which will greatly improve the production efficiency of electronic components industry.


Sign in / Sign up

Export Citation Format

Share Document