scholarly journals Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis

Author(s):  
Jian Hu ◽  
Xiangjie Li ◽  
Gang Hu ◽  
Yafei Lyu ◽  
Katalin Susztak ◽  
...  

AbstractAn important step in single-cell RNA-seq (scRNA-seq) analysis is to cluster cells into different populations or types. Here we describe ItClust, an Iterative Transfer learning algorithm with neural network for scRNA-seq Clustering. ItClust learns cell type knowledge from well-annotated source data, but also leverages information in the target data to make it less dependent on the source data quality. Through extensive evaluations using datasets from different species and tissues generated with diverse scRNA-seq protocols, we show that ItClust significantly improves clustering and cell type classification accuracy compared to popular unsupervised clustering and supervised cell type classification algorithms.

2020 ◽  
Vol 2 (10) ◽  
pp. 607-618 ◽  
Author(s):  
Jian Hu ◽  
Xiangjie Li ◽  
Gang Hu ◽  
Yafei Lyu ◽  
Katalin Susztak ◽  
...  

2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2021 ◽  
Author(s):  
Xin Shao ◽  
Haihong Yang ◽  
Xiang Zhuang ◽  
Jie Liao ◽  
Penghui Yang ◽  
...  

Abstract Advances in single-cell RNA sequencing (scRNA-seq) have furthered the simultaneous classification of thousands of cells in a single assay based on transcriptome profiling. In most analysis protocols, single-cell type annotation relies on marker genes or RNA-seq profiles, resulting in poor extrapolation. Still, the accurate cell-type annotation for single-cell transcriptomic data remains a great challenge. Here, we introduce scDeepSort (https://github.com/ZJUFanLab/scDeepSort), a pre-trained cell-type annotation tool for single-cell transcriptomics that uses a deep learning model with a weighted graph neural network (GNN). Using human and mouse scRNA-seq data resources, we demonstrate the high performance and robustness of scDeepSort in labeling 764 741 cells involving 56 human and 32 mouse tissues. Significantly, scDeepSort outperformed other known methods in annotating 76 external test datasets, reaching an 83.79% accuracy across 265 489 cells in humans and mice. Moreover, we demonstrate the universality of scDeepSort using more challenging datasets and using references from different scRNA-seq technology. Above all, scDeepSort is the first attempt to annotate cell types of scRNA-seq data with a pre-trained GNN model, which can realize the accurate cell-type annotation without additional references, i.e. markers or RNA-seq profiles.


2019 ◽  
Author(s):  
Jingxin Liu ◽  
You Song ◽  
Jinzhi Lei

We present the use of single-cell entropy (scEntropy) to measure the order of the cellular transcriptome profile from single-cell RNA-seq data, which leads to a method of unsupervised cell type classification through scEntropy followed by the Gaussian mixture model (scEGMM). scEntropy is straightforward in defining an intrinsic transcriptional state of a cell. scEGMM is a coherent method of cell type classification that includes no parameters and no clustering; however, it is comparable to existing machine learning-based methods in benchmarking studies and facilitates biological interpretation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David S. Fischer ◽  
Leander Dony ◽  
Martin König ◽  
Abdul Moeed ◽  
Luke Zappia ◽  
...  

AbstractSingle-cell RNA-seq datasets are often first analyzed independently without harnessing model fits from previous studies, and are then contextualized with public data sets, requiring time-consuming data wrangling. We address these issues with sfaira, a single-cell data zoo for public data sets paired with a model zoo for executable pre-trained models. The data zoo is designed to facilitate contribution of data sets using ontologies for metadata. We propose an adaption of cross-entropy loss for cell type classification tailored to datasets annotated at different levels of coarseness. We demonstrate the utility of sfaira by training models across anatomic data partitions on 8 million cells.


Author(s):  
Qianhui Huang ◽  
Yu Liu ◽  
Yuheng Du ◽  
Lana X. Garmire
Keyword(s):  
Rna Seq ◽  

Genomics ◽  
2021 ◽  
Vol 113 (6) ◽  
pp. 3582-3598
Author(s):  
Xiujun Sun ◽  
Li Li ◽  
Biao Wu ◽  
Jianlong Ge ◽  
Yanxin Zheng ◽  
...  

Author(s):  
Yang Xu ◽  
Priyojit Das ◽  
Rachel Patton McCord

Abstract Motivation Deep learning approaches have empowered single-cell omics data analysis in many ways and generated new insights from complex cellular systems. As there is an increasing need for single cell omics data to be integrated across sources, types, and features of data, the challenges of integrating single-cell omics data are rising. Here, we present an unsupervised deep learning algorithm that learns discriminative representations for single-cell data via maximizing mutual information, SMILE (Single-cell Mutual Information Learning). Results Using a unique cell-pairing design, SMILE successfully integrates multi-source single-cell transcriptome data, removing batch effects and projecting similar cell types, even from different tissues, into the shared space. SMILE can also integrate data from two or more modalities, such as joint profiling technologies using single-cell ATAC-seq, RNA-seq, DNA methylation, Hi-C, and ChIP data. When paired cells are known, SMILE can integrate data with unmatched feature, such as genes for RNA-seq and genome wide peaks for ATAC-seq. Integrated representations learned from joint profiling technologies can then be used as a framework for comparing independent single source data. Supplementary information Supplementary data are available at Bioinformatics online. The source code of SMILE including analyses of key results in the study can be found at: https://github.com/rpmccordlab/SMILE.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


Sign in / Sign up

Export Citation Format

Share Document