scholarly journals Similarities in the behaviour of dance followers among honey bee species suggest a conserved mechanism of dance communication

2020 ◽  
Author(s):  
Ebi Antony George ◽  
Smruti Pimplikar ◽  
Neethu Thulasi ◽  
Axel Brockmann

AbstractGroup living organisms rely on intra-group communication to adjust individual and collective behavioural decisions. Complex communication systems are predominantly multimodal and combine modulatory and information bearing signals. The honey bee waggle dance, one of the most elaborate forms of communication in invertebrates, stimulates nestmates to search for food and communicates symbolic information about the location of the food source. Previous studies on the dance behaviour in diverse honey bee species demonstrated distinct differences in the combination of visual, auditory, olfactory, and tactile signals produced by the dancer. We now studied the behaviour of the receivers of the dance signals, the dance followers, to explore the significance of the different signals in the communication process. In particular, we ask whether there are differences in the behaviour of dance followers between the 3 major Asian honey bee species, A. florea, A. dorsata and A. cerana, and whether these might correlate with the differences in the signals produced by the dancing foragers. Our comparison demonstrates that the behaviour of the dance followers is highly conserved across all 3 species despite the differences in the dance signals. The highest number of followers was present lateral to the dancer throughout the waggle run, and the mean body orientation of the dance followers with respect to the waggle dancer was close to 90° throughout the run for all 3 species. These findings suggest that dance communication might be more conserved than implied by the differences in the signals produced by the dancer. Along with studies in A. mellifera, our results indicate that all honey bee species rely on tactile contacts between the dancer and follower to communicate spatial information. The cues and signals that differ between the species may be involved in attracting the followers towards the dancer in the different nest environments.

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 191
Author(s):  
José A. P. Morgado ◽  
Adolfo V. T. Cartaxo

The correlation and power distribution of intercore crosstalk (ICXT) field components of weakly coupled multicore fibers (WC-MCFs) are important properties that determine the statistics of the ICXT and ultimately impact the performance of WC-MCF optical communication systems. Using intensive numerical simulation of the coupled mode equations describing ICXT of a single-mode WC-MCF with intracore birefringence and linear propagation, we assess the mean, correlation, and power distribution of the four ICXT field components of unmodulated polarization-coupled homogeneous and quasi-homogeneous WC-MCFs with a single interfering core in a wide range of birefringence conditions and power distribution among the field components at the interfering core input. It is shown that, for homogeneous and quasi-homogeneous WC-MCFs, zero mean uncorrelated ICXT field components with similar power levels are observed for birefringence correlation length and birefringence beat length in the ranges of 0.5m,10m and 0.1m,10m, respectively, regardless of the distribution of power between the four field components at the interfering core input.


2017 ◽  
Vol 56 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Xiangjie Zhu ◽  
Shujing Zhou ◽  
Xinjian Xu ◽  
Jianwen Wang ◽  
Yinglong Yu ◽  
...  

2017 ◽  
Vol 9 (2) ◽  
pp. 1208-1213
Author(s):  
Lalita Lalita ◽  
Yogesh Kumar

Foraging activity period of different honey bee species on C. moschata (C-1076) flowers at different day hours during August-September (2013) revealed that A. dorsata, A. mellifera, A. cerana and A. florea initiated their activity early in the morning at 0530, 0615, 0625 and 0630 h, respectively and stopped their activity at 1030, 1020, 1025 and 1030 h of the day, respectively while on C. moschata (C-1106, A. dorsata, A. mellifera, A. cerana and A. florea initiated their activity early in the morning at 0535, 0615, 0620 and 0625 h, respectively and ceased their activity at 1045, 1025, 1015 and 1040 h of the day, respectively. The mean foraging speed (time spent per flower) in seconds on flowers of pumpkin (C-1106) was maximum of A. florea (181.72), followed by A. mellifera (7.15), A. cerana (6.05) and A. dorsata spent least time (5.83) and in pumpkin (C-1076), foraging speed was maximum in case of A. florea (178.71), followed by A. mellifera (7.63), A. cerana (6.24) and A. dorsata spent least time (6.06). The mean foraging rate (flowers visited per minute) on flowers of pumpkin (C-1106) was maximum in case of A. dorsata (5.13), followed by A. cerana (4.30), A. mellifera (4.16) and A. florea visited least flower (0.32) and in pumpkin (C-1076), foraging rate was maximum in case of A. dorsata (4.96), followed by A. cerana (4.19), A. mellifera (4.02) and A. florea visited least flower (0.33). Present study advises the farmers that they should not apply the pesticide when the activityof honey bee is on the peak period because pesticides application at the time of bee activity in the field crop causes mortality of bees.


2017 ◽  
Vol 9 (3) ◽  
pp. 1603-1607
Author(s):  
Lalita Lalita ◽  
Yogesh Kumar

Foraging activity period of different honey bee species on C. moschata (C-1076) flowers at different day hours during August-September (2013) revealed that A. dorsata, A. mellifera, A. cerana and A. florea initiated their activity early in the morning at 0530, 0615, 0625 and 0630 h, respectively and stopped their activity at 1030, 1020, 1025 and 1030 h of the day, respectively while on C. moschata (C-1106, A. dorsata, A. mellifera, A. cerana and A. florea initiated their activity early in the morning at 0535, 0615, 0620 and 0625 h, respectively and ceased their activity at 1045, 1025, 1015 and 1040 h of the day, respectively. The mean foraging speed (time spent per flower) in seconds on flowers of pumpkin (C-1106) was maximum of A. florea (181.72), followed by A. mellifera (7.15), A. cerana (6.05) and A. dorsata spent least time (5.83) and in pumpkin (C-1076), foraging speed was maximum in case of A. florea (178.71), followed by A. mellifera (7.63), A. cerana (6.24) and A. dorsata spent least time (6.06). The mean foraging rate (flowers visited per minute) on flowers of pumpkin (C-1106) was maximum in case of A. dorsata (5.13), followed by A. cerana (4.30), A. mellifera (4.16) and A. florea visited least flower (0.32) and in pumpkin (C-1076), foraging rate was maximum in case of A. dorsata (4.96), followed by A. cerana (4.19), A. mellifera (4.02) and A. florea visited least flower (0.33). Present study advises the farmers that they should not apply the pesticide when the activity of honey bee is on the peak period because pesticides application at the time of bee activity in the field crop causes mortality of bees.


2018 ◽  
Vol 151 ◽  
pp. 131-136 ◽  
Author(s):  
Pichaya Chanpanitkitchote ◽  
Yanping Chen ◽  
Jay D. Evans ◽  
Wenfeng Li ◽  
Jianghong Li ◽  
...  

2019 ◽  
pp. 1456-1477
Author(s):  
François Pinet ◽  
Petraq Papajorgji

Information systems relate to diverse applications, but, until recently, the use of this technology in agriculture and environment has been relatively behind the applications in the industrial sector. The publication of IJAEIS started in 2010 in order to promote the new research advances in information systems applied to agriculture and environment. This paper presents an overview of the different scientific issues presented in the 50 papers published in IJAEIS between 2010 and 2013. The authors summarize the different contributions presented in IJAEIS and the authors identify the main trends in the field of agricultural and environmental information systems (ontologies, communication systems, spatial information processing, etc.).


Apidologie ◽  
2019 ◽  
Vol 50 (6) ◽  
pp. 871-880 ◽  
Author(s):  
Jorgiane B. Parish ◽  
Eileen S. Scott ◽  
Raymond Correll ◽  
Katja Hogendoorn

AbstractHoney bees, Apis mellifera, have been implicated as vectors of plant pathogens. However, the survival of spores of plant pathogenic fungi through the digestive tract of workers has not been investigated. As workers defecate outside the hive, transport of hives could give rise to biosecurity concerns if fungal spores remain viable following passage through the digestive tract. To determine the likelihood that honey bees serve as vectors, this study investigated the viability of spores of Botrytis cinerea and Colletotrichum acutatum after passing through the digestive tract of summer and autumn worker bees. For both fungi, the mean viability of spores in faeces suspensions was less than one percent of the initial dose fed to the bees. Although survival was low, the large number of workers per hive implies a high probability of transmission of viable spores through honey bee faeces. Hence, in the case of economically important fungal diseases, transported hives could be a source of inoculum and quarantine restrictions should be considered.


2020 ◽  
Vol 9 (10) ◽  
pp. 571
Author(s):  
Jinglun Li ◽  
Jiapeng Xiu ◽  
Zhengqiu Yang ◽  
Chen Liu

Semantic segmentation plays an important role in being able to understand the content of remote sensing images. In recent years, deep learning methods based on Fully Convolutional Networks (FCNs) have proved to be effective for the sematic segmentation of remote sensing images. However, the rich information and complex content makes the training of networks for segmentation challenging, and the datasets are necessarily constrained. In this paper, we propose a Convolutional Neural Network (CNN) model called Dual Path Attention Network (DPA-Net) that has a simple modular structure and can be added to any segmentation model to enhance its ability to learn features. Two types of attention module are appended to the segmentation model, one focusing on spatial information the other focusing upon the channel. Then, the outputs of these two attention modules are fused to further improve the network’s ability to extract features, thus contributing to more precise segmentation results. Finally, data pre-processing and augmentation strategies are used to compensate for the small number of datasets and uneven distribution. The proposed network was tested on the Gaofen Image Dataset (GID). The results show that the network outperformed U-Net, PSP-Net, and DeepLab V3+ in terms of the mean IoU by 0.84%, 2.54%, and 1.32%, respectively.


Sign in / Sign up

Export Citation Format

Share Document