scholarly journals Amyloid fibril structure of islet amyloid polypeptide by cryo-electron microscopy reveals similarities with amyloid beta

Author(s):  
Christine Röder ◽  
Tatsiana Kupreichyk ◽  
Lothar Gremer ◽  
Luisa U. Schäfer ◽  
Karunakar R. Pothula ◽  
...  

AbstractA critical role of the hormone islet amyloid polypeptide (IAPP) is vividly discussed for Type 2 Diabetes (T2D), where amyloid deposits in pancreatic islets consisting of fibrillar IAPP have been associated with beta cell loss. Here, we applied cryo-electron microscopy to elucidate the structure of IAPP fibrils prepared at physiological pH and reconstructed densities of three dominant polymorphs. An atomic model of the main polymorph comprising residues 13 – 37 in a density map of 4.2 Å resolution reveals two S-shaped, intertwined protofilaments. The segment 21-NNFGAIL-27, which is essential for IAPP amyloidogenicity, forms the protofilament interface together with tyrosine 37 and the amidated C-terminus. The main IAPP fibril polymorph resembles polymorphs of the Alzheimer disease (AD)-associated amyloid-β peptide (Aβ), which is striking in light of the epidemiological link between T2D and AD and reports on IAPP-Aβ cross-seeding in vivo. The results structurally link the early-onset T2D IAPP genetic polymorphism S20G with the early-onset AD Arctic mutation E22G of Aβ, rationalize previous data on IAPP fibrils, help to elucidate mechanisms of amyloid formation and toxicity, and support the design of fibril growth inhibitors as well as imaging probes for early detection of IAPP fibrils.

2010 ◽  
Vol 10 ◽  
pp. 879-893 ◽  
Author(s):  
Nathaniel G. N. Milton ◽  
J. Robin Harris

The diabetes-associated human islet amyloid polypeptide (IAPP) is a 37-amino-acid peptide that forms fibrilsin vitroandin vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ) and prion protein (PrP) fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM)—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KDof 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.


2020 ◽  
Vol 26 (64) ◽  
pp. 14612-14622
Author(s):  
Julia Kaffy ◽  
Corentin Berardet ◽  
Loïc Mathieu ◽  
Baptiste Legrand ◽  
Myriam Taverna ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Diana C Rodriguez Camargo ◽  
Kyle J Korshavn ◽  
Alexander Jussupow ◽  
Kolio Raltchev ◽  
David Goricanec ◽  
...  

Membrane-assisted amyloid formation is implicated in human diseases, and many of the aggregating species accelerate amyloid formation and induce cell death. While structures of membrane-associated intermediates would provide tremendous insights into the pathology and aid in the design of compounds to potentially treat the diseases, it has not been feasible to overcome the challenges posed by the cell membrane. Here, we use NMR experimental constraints to solve the structure of a type-2 diabetes related human islet amyloid polypeptide intermediate stabilized in nanodiscs. ROSETTA and MD simulations resulted in a unique β-strand structure distinct from the conventional amyloid β-hairpin and revealed that the nucleating NFGAIL region remains flexible and accessible within this isolated intermediate, suggesting a mechanism by which membrane-associated aggregation may be propagated. The ability of nanodiscs to trap amyloid intermediates as demonstrated could become one of the most powerful approaches to dissect the complicated misfolding pathways of protein aggregation.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 134 ◽  
Author(s):  
Anna L. Gharibyan ◽  
Tohidul Islam ◽  
Nina Pettersson ◽  
Solmaz A. Golchin ◽  
Johanna Lundgren ◽  
...  

Apolipoprotein E (ApoE) has become a primary focus of research after the discovery of its strong linkage to Alzheimer’s disease (AD), where the ApoE4 variant is the highest genetic risk factor for this disease. ApoE is commonly found in amyloid deposits of different origins, and its interaction with amyloid-β peptide (Aβ), the hallmark of AD, is well known. However, studies on the interaction of ApoEs with other amyloid-forming proteins are limited. Islet amyloid polypeptide (IAPP) is an amyloid-forming peptide linked to the development of type-2 diabetes and has also been shown to be involved in AD pathology and vascular dementia. Here we studied the impact of ApoE on IAPP aggregation and IAPP-induced toxicity on blood vessel pericytes. Using both in vitro and cell-based assays, we show that ApoE efficiently inhibits the amyloid formation of IAPP at highly substoichiometric ratios and that it interferes with both nucleation and elongation. We also show that ApoE protects the pericytes against IAPP-induced toxicity, however, the ApoE4 variant displays the weakest protective potential. Taken together, our results suggest that ApoE has a generic amyloid-interfering property and can be protective against amyloid-induced cytotoxicity, but there is a loss of function for the ApoE4 variant.


2021 ◽  
Vol 22 (20) ◽  
pp. 11153
Author(s):  
Ye Wang ◽  
Gunilla T. Westermark

Epidemiological studies support a connection between the two common disorders, type-2 diabetes and Alzheimer’s disease. Both conditions have local amyloid formation in their pathogenesis, and cross-seeding between islet amyloid polypeptide (IAPP) and amyloid β (Aβ) could constitute the link. The bimolecular fluorescence complementation (BiFC) assay was used to investigate the occurrence of heterologous interactions between IAPP and Aβ and to compare the potential toxic effects of IAPP/Aβ, IAPP/IAPP, and Aβ/Aβ expression in living cells. Microscopy was used to confirm the fluorescence and determine the lysosomal, mitochondrial areas and mitochondrial membrane potential , and a FACS analysis was used to determine ROS production and the role for autophagy. Drosophila melanogaster expressing IAPP and Aβ was used to study their co-deposition and effects on longevity. We showed that the co-expression of IAPP and Aβ resulted in fluorophore reconstitution to the same extent as determined for homologous IAPP/IAPP or Aβ/Aβ expression. The BiFC(+)/BiFC(-) ratio of lysosomal area calculations increased in transfected cells independent of the vector combinations, while only Aβ/Aβ expression increased mitochondrial membrane potential. Expression combinations containing Aβ were necessary for the formation of a congophilic amyloid. In Drosophila melanogaster expressing IAPP/Aβ, co-deposition of the amyloid-forming peptides caused reduced longevity. The BiFC results confirmed a heterologous interaction between IAPP and Aβ, while co-deposits in the brain of Drosophila suggest mixed amyloid aggregates.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Rehana Akter ◽  
Ping Cao ◽  
Harris Noor ◽  
Zachary Ridgway ◽  
Ling-Hsien Tu ◽  
...  

The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes toβ-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formationin vivoorin vitroare not understood and the mechanisms of IAPP inducedβ-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms ofβ-cell death, the relevance of reductionist biophysical studies to the situationin vivo, the molecular mechanism of amyloid formationin vitroandin vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.


1995 ◽  
Vol 1 (5) ◽  
pp. 542-553 ◽  
Author(s):  
Gunilla Westermark ◽  
Michelle Benig Arora ◽  
Niles Fox ◽  
Raymond Carroll ◽  
Shu Jin Chan ◽  
...  

1996 ◽  
Vol 314 (2) ◽  
pp. 701-707 ◽  
Author(s):  
Claudio SOTO ◽  
Eduardo M. CASTAÑO

Amyloid β-peptide (Aβ) is found in an aggregated poorly soluble form in senile or neuritic plaques deposited in the brain of individuals affected by Alzheimer's disease (AD). In addition soluble Aβ (sAβ) is identified normally circulating in human body fluids. In this study we report that synthetic peptides containing the sequences 1–40 and 1–42 of Aβ, and Aβ analogues bearing amino acid substitutions can adopt two major conformational states in solution: (1) an amyloidogenic conformer (Aβac) with a high content of β-sheet and partly resistant to proteases and (2) a non-amyloidogenic conformer (Aβnac) with a random coil conformation and protease-sensitive. The differences in the fibrillogenesis rate and in the protease resistance among the several Aβ peptides studied depend mainly on the relative propensity for adopting the amyloidogenic conformation, which in the absence of external factors is largely conditioned by the primary structure of the peptide. Aβnac containing the sequence 1–40, 1–42 or bearing amino acid substitutions (Dutch variant of Aβ) was protease-sensitive and unable to form a significant amount of amyloid even at high concentrations or after long incubations. The finding of the simultaneous existence of different Aβ conformers with distinct abilities to form amyloid may help to explain why Aβ is found in both soluble and fibrillar forms in vivo.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


Sign in / Sign up

Export Citation Format

Share Document