scholarly journals High-quality de novo genome assembly of Kappaphycus alvarezii based on both PacBio and HiSeq sequencing

2020 ◽  
Author(s):  
Shangang Jia ◽  
Guoliang Wang ◽  
Guiming Liu ◽  
Jiangyong Qu ◽  
Beilun Zhao ◽  
...  

ABSTRACTThe red algae Kappaphycus alvarezii is the most important aquaculture species in Kappaphycus, widely distributed in tropical waters, and it has become the main crop of carrageenan production at present. The mechanisms of adaptation for high temperature, high salinity environments and carbohydrate metabolism may provide an important inspiration for marine algae study. Scientific background knowledge such as genomic data will be also essential to improve disease resistance and production traits of K. alvarezii. 43.28 Gb short paired-end reads and 18.52 Gb single-molecule long reads of K. alvarezii were generated by Illumina HiSeq platform and Pacbio RSII platform respectively. The de novo genome assembly was performed using Falcon_unzip and Canu software, and then improved with Pilon. The final assembled genome (336 Mb) consists of 888 scaffolds with a contig N50 of 849 Kb. Further annotation analyses predicted 21,422 protein-coding genes, with 61.28% functionally annotated. Here we report the draft genome and annotations of K. alvarezii, which are valuable resources for future genomic and genetic studies in Kappaphycus and other algae.

2021 ◽  
Author(s):  
Teng Li ◽  
David Kainer ◽  
William J Foley ◽  
Allen Rodrigo ◽  
Carsten Kuelheim

Eucalyptus polybractea is a small, multi-stemmed tree, which is widely cultivated in Australia for the production of Eucalyptus oil. We report the hybrid assembly of the E. polybractea genome utilizing both short- and long-read technology. We generated 44 Gb of Illumina HiSeq short reads and 8 Gb of Nanopore long reads, representing approximately 83 and 15 times genome coverage, respectively. The hybrid-assembled genome, after polishing, contained 24,864 scaffolds with an accumulated length of 523 Mb (N50 = 40.3 kb; BUSCO-calculated genome completeness of 94.3%). The genome contained 35,385 predicted protein-coding genes detected by combining homology-based and de novo approaches. We have provided the first assembled genome based on hybrid sequences from the highly diverse Eucalyptus subgenus Symphyomyrtus, and revealed the value of including long-reads from Nanopore technology for enhancing the contiguity of the assembled genome, as well as for improving its completeness. We anticipate that the E. polybractea genome will be an invaluable resource supporting a range of studies in genetics, population genomics and evolution of related species in Eucalyptus.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xuchen Yang ◽  
Minghui Kang ◽  
Yanting Yang ◽  
Haifeng Xiong ◽  
Mingcheng Wang ◽  
...  

AbstractThe deciduous Chinese tupelo (Nyssa sinensis Oliv.) is a popular ornamental tree for the spectacular autumn leaf color. Here, using single-molecule sequencing and chromosome conformation capture data, we report a high-quality, chromosome-level genome assembly of N. sinensis. PacBio long reads were de novo assembled into 647 polished contigs with a total length of 1,001.42 megabases (Mb) and an N50 size of 3.62 Mb, which is in line with genome sizes estimated using flow cytometry and the k-mer analysis. These contigs were further clustered and ordered into 22 pseudo-chromosomes based on Hi-C data, matching the chromosome counts in Nyssa obtained from previous cytological studies. In addition, a total of 664.91 Mb of repetitive elements were identified and a total of 37,884 protein-coding genes were predicted in the genome of N. sinensis. All data were deposited in publicly available repositories, and should be a valuable resource for genomics, evolution, and conservation biology.


GigaScience ◽  
2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Jing Yang ◽  
Hafiz Muhammad Wariss ◽  
Lidan Tao ◽  
Rengang Zhang ◽  
Quanzheng Yun ◽  
...  

Abstract Background Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on “plant species with extremely small populations (PSESP)”. Findings We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is ∼666 Mb, with 13 chromosomes covering ∼97% of the genome and scaffold N50 sizes of 45 Mb. Further, BUSCO analysis recovered 95.5% complete BUSCO genes. The total number of repetitive elements account for 68.0% of the A. yangbiense genome. Genome annotation generated 28,320 protein-coding genes, assisted by a combination of prediction and transcriptome sequencing. In addition, a nearly 1:1 orthology ratio of dot plots of longer syntenic blocks revealed a similar evolutionary history between A. yangbiense and grape, indicating that the genome has not undergone a whole-genome duplication event after the core eudicot common hexaploidization. Conclusion Here, we report a high-quality de novo genome assembly of A. yangbiense, the first genome for the genus Acer and the family Aceraceae. This will provide fundamental conservation genomics resources, as well as representing a new high-quality reference genome for the economically important Acer lineage and the wider order of Sapindales.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lauren Coombe ◽  
Janet X. Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Abstract Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of Caenorhabditis elegans, Oryza sativa, and three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 1.2-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently improves upon human assemblies in under five hours using less than 23 GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Chunqing Ou ◽  
Fei Wang ◽  
Jiahong Wang ◽  
Song Li ◽  
Yanjie Zhang ◽  
...  

Abstract‘Zhongai 1’ [(Pyrus ussuriensis × communis) × spp.] is an excellent pear dwarfing rootstock common in China. It is dwarf itself and has high dwarfing efficiency on most of main Pyrus cultivated species when used as inter-stock. Here we describe the draft genome sequences of ‘Zhongai 1’ which was assembled using PacBio long reads, Illumina short reads and Hi-C technology. We estimated the genome size is approximately 511.33 Mb by K-mer analysis and obtained a final genome of 510.59 Mb with a contig N50 size of 1.28 Mb. Next, 506.31 Mb (99.16%) of contigs were clustered into 17 chromosomes with a scaffold N50 size of 23.45 Mb. We further predicted 309.86 Mb (60.68%) of repetitive sequences and 43,120 protein-coding genes. The assembled genome will be a valuable resource and reference for future pear breeding, genetic improvement, and comparative genomics among related species. Moreover, it will help identify genes involved in dwarfism, early flowering, stress tolerance, and commercially desirable fruit characteristics.


2021 ◽  
Author(s):  
Chi yang ◽  
Lu Ma ◽  
Donglai Xiao ◽  
Xiaoyu Liu ◽  
Xiaoling Jiang ◽  
...  

Sparassis latifolia is a valuable edible mushroom cultivated in China. In 2018, our research group reported an incomplete and low quality genome of S. latifolia was obtained by Illumina HiSeq 2500 sequencing. These limitations in the available genome have constrained genetic and genomic studies in this mushroom resource. Herein, an updated draft genome sequence of S. latifolia was generated by Oxford Nanopore sequencing and the Hi-C technique. A total of 8.24 Gb of Oxford Nanopore long reads representing ~198.08X coverage of the S. latifolia genome were generated. Subsequently, a high-quality genome of 41.41 Mb, with scaffold and contig N50 sizes of 3.31 Mb and 1.51 Mb, respectively, was assembled. Hi-C scaffolding of the genome resulted in 12 pseudochromosomes containing 93.56% of the bases in the assembled genome. Genome annotation further revealed that 17.47% of the genome was composed of repetitive sequences. In addition, 13,103 protein-coding genes were predicted, among which 98.72% were functionally annotated. BUSCO assay results further revealed that there were 92.07% complete BUSCOs. The improved chromosome-scale assembly and genome features described here will aid further molecular elucidation of various traits, breeding of S. latifolia, and evolutionary studies with related taxa.


GigaScience ◽  
2020 ◽  
Vol 9 (8) ◽  
Author(s):  
Eugenie C Yen ◽  
Shane A McCarthy ◽  
Juan A Galarza ◽  
Tomas N Generalovic ◽  
Sarah Pelan ◽  
...  

ABSTRACT Background Diploid genome assembly is typically impeded by heterozygosity because it introduces errors when haplotypes are collapsed into a consensus sequence. Trio binning offers an innovative solution that exploits heterozygosity for assembly. Short, parental reads are used to assign parental origin to long reads from their F1 offspring before assembly, enabling complete haplotype resolution. Trio binning could therefore provide an effective strategy for assembling highly heterozygous genomes, which are traditionally problematic, such as insect genomes. This includes the wood tiger moth (Arctia plantaginis), which is an evolutionary study system for warning colour polymorphism. Findings We produced a high-quality, haplotype-resolved assembly for Arctia plantaginis through trio binning. We sequenced a same-species family (F1 heterozygosity ∼1.9%) and used parental Illumina reads to bin 99.98% of offspring Pacific Biosciences reads by parental origin, before assembling each haplotype separately and scaffolding with 10X linked reads. Both assemblies are contiguous (mean scaffold N50: 8.2 Mb) and complete (mean BUSCO completeness: 97.3%), with annotations and 31 chromosomes identified through karyotyping. We used the assembly to analyse genome-wide population structure and relationships between 40 wild resequenced individuals from 5 populations across Europe, revealing the Georgian population as the most genetically differentiated with the lowest genetic diversity. Conclusions We present the first invertebrate genome to be assembled via trio binning. This assembly is one of the highest quality genomes available for Lepidoptera, supporting trio binning as a potent strategy for assembling heterozygous genomes. Using our assembly, we provide genomic insights into the geographic population structure of A. plantaginis.


2020 ◽  
Vol 12 (7) ◽  
pp. 1074-1079 ◽  
Author(s):  
Ruihao Shu ◽  
Jihong Zhang ◽  
Qian Meng ◽  
Huan Zhang ◽  
Guiling Zhou ◽  
...  

Abstract Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus endemic to the Qinghai-Tibet Plateau. It parasitizes and mummifies the underground ghost moth larvae, then produces a fruiting body. The fungus-insect complex, called Chinese cordyceps or “DongChongXiaCao,” is not only a valuable traditional Chinese medicine, but also a major source of income for numerous Himalayan residents. Here, taking advantage of rapid advances in single-molecule sequencing, we assembled a highly contiguous genome assembly of O. sinensis. The assembly of 23 contigs was ∼110.8 Mb with a N50 length of 18.2 Mb. We used RNA-seq and homologous protein sequences to identify 8,916 protein-coding genes in the IOZ07 assembly. Moreover, 63 secondary metabolite gene clusters were identified in the improved assembly. The improved assembly and genome features described in this study will further inform the evolutionary study and resource utilization of Chinese cordyceps.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pingping Liang ◽  
Hafiz Sohaib Ahmed Saqib ◽  
Xiaomin Ni ◽  
Yingjia Shen

Abstract Background Marine medaka (Oryzias melastigma) is considered as an important ecotoxicological indicator to study the biochemical, physiological and molecular responses of marine organisms towards increasing amount of pollutants in marine and estuarine waters. Results In this study, we reported a high-quality and accurate de novo genome assembly of marine medaka through the integration of single-molecule sequencing, Illumina paired-end sequencing, and 10X Genomics linked-reads. The 844.17 Mb assembly is estimated to cover more than 98% of the genome and is more continuous with fewer gaps and errors than the previous genome assembly. Comparison of O. melastigma with closely related species showed significant expansion of gene families associated with DNA repair and ATP-binding cassette (ABC) transporter pathways. We identified 274 genes that appear to be under significant positive selection and are involved in DNA repair, cellular transportation processes, conservation and stability of the genome. The positive selection of genes and the considerable expansion in gene numbers, especially related to stimulus responses provide strong supports for adaptations of O. melastigma under varying environmental stresses. Conclusions The highly contiguous marine medaka genome and comparative genomic analyses will increase our understanding of the underlying mechanisms related to its extraordinary adaptation capability, leading towards acceleration in the ongoing and future investigations in marine ecotoxicology.


Sign in / Sign up

Export Citation Format

Share Document